Articles | Volume 11, issue 2
https://doi.org/10.5194/amt-11-1159-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-1159-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Information content analysis: the potential for methane isotopologue retrieval from GOSAT-2
Imaging Group, Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK
Yukio Yoshida
Center for Global Environmental Research/Satellite Observation Center, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, Japan 305-8506
Tsuneo Matsunaga
Center for Global Environmental Research/Satellite Observation Center, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, Japan 305-8506
Jan-Peter Muller
Imaging Group, Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK
Related authors
Carlo Arosio, Viktoria Sofieva, Andrea Orfanoz-Cheuquelaf, Alexei Rozanov, Klaus-Peter Heue, Diego Loyola, Edward Malina, Ryan M. Stauffer, David Tarasick, Roeland Van Malderen, Jerry R. Ziemke, and Mark Weber
Atmos. Meas. Tech., 18, 3247–3265, https://doi.org/10.5194/amt-18-3247-2025, https://doi.org/10.5194/amt-18-3247-2025, 2025
Short summary
Short summary
Tropospheric ozone affects air quality and climate, being a pollutant and a greenhouse gas. We analyze satellite data of tropospheric ozone columns obtained by combining two types of observations: one providing stratospheric and the other total ozone. We compare common climatological features and study the influence of the tropopause (troposphere to stratosphere boundary) on the results. We also examine trends over the last 20 years and compare satellite data with ozonesondes to identify drifts.
Konstantinos Rizos, Emmanouil Proestakis, Thanasis Georgiou, Antonis Gkikas, Eleni Marinou, Peristera Paschou, Kalliopi Artemis Voudouri, Athanasios Tsikerdekis, David Donovan, Gerd-Jan van Zadelhoff, Angela Benedetti, Holger Baars, Athena Augusta Floutsi, Nikos Benas, Martin Stengel, Christian Retscher, Edward Malina, and Vassilis Amiridis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1175, https://doi.org/10.5194/egusphere-2025-1175, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The Aeolus satellite's lidar system had limitations in detecting certain atmospheric layers and distinguishing between aerosol and cloud types. To improve accuracy, a new dust detection product was developed. By combining data from various sources and validating it with ground-based measurements, this enhanced product performs better than the original. It helps improve dust transport models and weather predictions, making it a valuable tool for atmospheric monitoring and forecasting.
Edward Malina, Ben Veihelmann, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, and Isamu Morino
Atmos. Meas. Tech., 15, 2377–2406, https://doi.org/10.5194/amt-15-2377-2022, https://doi.org/10.5194/amt-15-2377-2022, 2022
Short summary
Short summary
Methane retrievals from remote sensing instruments are fundamentally based on spectroscopic parameters, which indicate spectral-line positions, and their characteristics. These parameters are stored in several databases that vary in their make-up. Here we assess how concentrations of methane isotopologues measured from the same Total Carbon Column Observing Network (TCCON) instruments vary across a range of spectral windows using different spectroscopic databases and comment on the implications.
Carlo Arosio, Viktoria Sofieva, Andrea Orfanoz-Cheuquelaf, Alexei Rozanov, Klaus-Peter Heue, Diego Loyola, Edward Malina, Ryan M. Stauffer, David Tarasick, Roeland Van Malderen, Jerry R. Ziemke, and Mark Weber
Atmos. Meas. Tech., 18, 3247–3265, https://doi.org/10.5194/amt-18-3247-2025, https://doi.org/10.5194/amt-18-3247-2025, 2025
Short summary
Short summary
Tropospheric ozone affects air quality and climate, being a pollutant and a greenhouse gas. We analyze satellite data of tropospheric ozone columns obtained by combining two types of observations: one providing stratospheric and the other total ozone. We compare common climatological features and study the influence of the tropopause (troposphere to stratosphere boundary) on the results. We also examine trends over the last 20 years and compare satellite data with ozonesondes to identify drifts.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, Irène Xueref-Remy, and Damiano Sferlazzo
Atmos. Chem. Phys., 25, 6757–6785, https://doi.org/10.5194/acp-25-6757-2025, https://doi.org/10.5194/acp-25-6757-2025, 2025
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas, and its emissions reduction is urgently required to mitigate global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Konstantinos Rizos, Emmanouil Proestakis, Thanasis Georgiou, Antonis Gkikas, Eleni Marinou, Peristera Paschou, Kalliopi Artemis Voudouri, Athanasios Tsikerdekis, David Donovan, Gerd-Jan van Zadelhoff, Angela Benedetti, Holger Baars, Athena Augusta Floutsi, Nikos Benas, Martin Stengel, Christian Retscher, Edward Malina, and Vassilis Amiridis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1175, https://doi.org/10.5194/egusphere-2025-1175, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The Aeolus satellite's lidar system had limitations in detecting certain atmospheric layers and distinguishing between aerosol and cloud types. To improve accuracy, a new dust detection product was developed. By combining data from various sources and validating it with ground-based measurements, this enhanced product performs better than the original. It helps improve dust transport models and weather predictions, making it a valuable tool for atmospheric monitoring and forecasting.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025, https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical model developed based on the Vegetation Integrative Simulator for Trace gases (VISIT) to represent satellite-observed SIF. Our simulations reproduced the global distribution and seasonal variations in observed SIF. VISIT-SIF helps to improve photosynthetic processes through a combination of biogeochemical modeling and observed SIF.
Robert G. Ryan, Eloise A. Marais, Eleanor Gershenson-Smith, Robbie Ramsay, Jan-Peter Muller, Jan-Lukas Tirpitz, and Udo Frieß
Atmos. Chem. Phys., 23, 7121–7139, https://doi.org/10.5194/acp-23-7121-2023, https://doi.org/10.5194/acp-23-7121-2023, 2023
Short summary
Short summary
We describe the first data retrieval from a newly installed instrument providing measurements of vertical profiles of air pollution over Central London during heatwaves in summer 2022. We use these observations with surface air quality network measurements to support interpretation that an exponential increase in biogenic emissions of isoprene during heatwaves provides the limiting ingredient for severe ozone pollution, leading to non-compliance with the national ozone air quality standard.
Yu Someya, Yukio Yoshida, Hirofumi Ohyama, Shohei Nomura, Akihide Kamei, Isamu Morino, Hitoshi Mukai, Tsuneo Matsunaga, Joshua L. Laughner, Voltaire A. Velazco, Benedikt Herkommer, Yao Té, Mahesh Kumar Sha, Rigel Kivi, Minqiang Zhou, Young Suk Oh, Nicholas M. Deutscher, and David W. T. Griffith
Atmos. Meas. Tech., 16, 1477–1501, https://doi.org/10.5194/amt-16-1477-2023, https://doi.org/10.5194/amt-16-1477-2023, 2023
Short summary
Short summary
The updated retrieval algorithm for the Greenhouse gases Observing SATellite level 2 product is presented. The main changes in the algorithm from the previous one are the treatment of cirrus clouds, the degradation model of the sensor, solar irradiance, and gas absorption coefficient tables. The retrieval results showed improvements in fitting accuracy and an increase in the data amount over land. On the other hand, there are still large biases of XCO2 which should be corrected over the ocean.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Oliver Schneising, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Robert J. Parker, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Markus Rettinger, Coleen Roehl, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, and Thorsten Warneke
Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, https://doi.org/10.5194/amt-15-3401-2022, 2022
Short summary
Short summary
We present a new version (v3) of the GOSAT and GOSAT-2 FOCAL products.
In addition to an increased number of XCO2 data, v3 also includes products for XCH4 (full-physics and proxy), XH2O and the relative ratio of HDO to H2O (δD). For GOSAT-2, we also present first XCO and XN2O results. All FOCAL data products show reasonable spatial distribution and temporal variations and agree well with TCCON. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb.
Edward Malina, Ben Veihelmann, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, and Isamu Morino
Atmos. Meas. Tech., 15, 2377–2406, https://doi.org/10.5194/amt-15-2377-2022, https://doi.org/10.5194/amt-15-2377-2022, 2022
Short summary
Short summary
Methane retrievals from remote sensing instruments are fundamentally based on spectroscopic parameters, which indicate spectral-line positions, and their characteristics. These parameters are stored in several databases that vary in their make-up. Here we assess how concentrations of methane isotopologues measured from the same Total Carbon Column Observing Network (TCCON) instruments vary across a range of spectral windows using different spectroscopic databases and comment on the implications.
Makoto Saito, Tomohiro Shiraishi, Ryuichi Hirata, Yosuke Niwa, Kazuyuki Saito, Martin Steinbacher, Doug Worthy, and Tsuneo Matsunaga
Biogeosciences, 19, 2059–2078, https://doi.org/10.5194/bg-19-2059-2022, https://doi.org/10.5194/bg-19-2059-2022, 2022
Short summary
Short summary
This study tested combinations of two sources of AGB data and two sources of LCC data and used the same burned area satellite data to estimate BB CO emissions. Our analysis showed large discrepancies in annual mean CO emissions and explicit differences in the simulated CO concentrations among the BB emissions estimates. This study has confirmed that BB emissions estimates are sensitive to the land surface information on which they are based.
Jiye Zeng, Tsuneo Matsunaga, and Tomoko Shirai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-71, https://doi.org/10.5194/essd-2022-71, 2022
Manuscript not accepted for further review
Short summary
Short summary
We have extracted the increase rates of ocean CO2 with three types of machine learning models. The results are new and important because scarce data made it difficult to use machine learning models for for ocean CO2 reconstruction and oceanic CO2 sink estimate. One of the approaches is to remove the trend in CO2 data obtained in multiple-years so that the models can learn the non-linear dependence of CO2 on seawater properties better.
P. A. Strobl, C. Bielski, P. L. Guth, C. H. Grohmann, J.-P. Muller, C. López-Vázquez, D. B. Gesch, G. Amatulli, S. Riazanoff, and C. Carabajal
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 395–400, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021, 2021
J.-P. Muller, Y. Tao, A. R. D. Putri, and S. J. Conway
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 667–671, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-667-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-667-2021, 2021
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 3837–3869, https://doi.org/10.5194/amt-14-3837-2021, https://doi.org/10.5194/amt-14-3837-2021, 2021
Short summary
Short summary
We present the first GOSAT and GOSAT-2 XCO2 data derived with the FOCAL retrieval algorithm. Comparisons of the GOSAT-FOCAL product with other data reveal long-term agreement within about 1 ppm over 1 decade, differences in seasonal variations of about 0.5 ppm, and a mean regional bias to ground-based TCCON data of 0.56 ppm with a mean scatter of 1.89 ppm. GOSAT-2-FOCAL data are preliminary only, but first comparisons show that they compare well with the GOSAT-FOCAL results and TCCON.
Tea Thum, Julia E. M. S. Nabel, Aki Tsuruta, Tuula Aalto, Edward J. Dlugokencky, Jari Liski, Ingrid T. Luijkx, Tiina Markkanen, Julia Pongratz, Yukio Yoshida, and Sönke Zaehle
Biogeosciences, 17, 5721–5743, https://doi.org/10.5194/bg-17-5721-2020, https://doi.org/10.5194/bg-17-5721-2020, 2020
Short summary
Short summary
Global vegetation models are important tools in estimating the impacts of global climate change. The fate of soil carbon is of the upmost importance as its emissions will enhance the atmospheric carbon dioxide concentration. To evaluate the skill of global vegetation models to model the soil carbon and its responses to environmental factors, it is important to use different data sources. We evaluated two different soil carbon models by using atmospheric carbon dioxide concentrations.
Hirofumi Ohyama, Isamu Morino, Voltaire A. Velazco, Theresa Klausner, Gerry Bagtasa, Matthäus Kiel, Matthias Frey, Akihiro Hori, Osamu Uchino, Tsuneo Matsunaga, Nicholas M. Deutscher, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Sally E. Pusede, Alina Fiehn, Anke Roiger, Michael Lichtenstern, Hans Schlager, Pao K. Wang, Charles C.-K. Chou, Maria Dolores Andrés-Hernández, and John P. Burrows
Atmos. Meas. Tech., 13, 5149–5163, https://doi.org/10.5194/amt-13-5149-2020, https://doi.org/10.5194/amt-13-5149-2020, 2020
Short summary
Short summary
Column-averaged dry-air mole fractions of CO2 and CH4 measured by a solar viewing portable Fourier transform spectrometer (EM27/SUN) were validated with in situ profile data obtained during the transfer flights of two aircraft campaigns. Atmospheric dynamical properties based on ERA5 and WRF-Chem were used as criteria for selecting the best aircraft profiles for the validation. The resulting air-mass-independent correction factors for the EM27/SUN data were 0.9878 for CO2 and 0.9829 for CH4.
Cited articles
Aydin, M., Verhulst, K. R., Saltzman, E. S., Battle, M. O., Montzka, S. A.,
Blake, D. R., Tang, Q., and Prather, M. J.: Recent decreases in fossil-fuel
emissions of ethane and methane derived from firn air, Nature, 476, 198–201,
https://doi.org/10.1038/nature10352, 2011.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S.,
Rozanov, V. V, Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission
Objectives and Measurement Modes, J. Atmos. Sci., 56, 127–150,
https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.
Brown, L. R., Sung, K., Benner, D. C., Devi, V. M., Boudon, V., Gabard, T.,
Wenger, C., Campargue, A., Leshchishina, O., Kassi, S., Mondelain, D., Wang,
L., Daumont, L., Régalia, L., Rey, M., Thomas, X., Tyuterev, V. G.,
Lyulin, O. M., Nikitin, A. V, Niederer, H. M., Albert, S., Bauerecker, S.,
Quack, M., O'Brien, J. J., Gordon, I. E., Rothman, L. S., Sasada, H.,
Coustenis, A., Smith, M. A. H., Carrington, T., Wang, X. G., Mantz, A. W.,
and Spickler, P. T.: Methane line parameters in the HITRAN2012 database, J.
Quant. Spectrosc. Ra., 130, 201–219, https://doi.org/10.1016/j.jqsrt.2013.06.020, 2013.
Buzan, E. M., Beale, C. A., Boone, C. D., and Bernath, P. F.: Global
stratospheric measurements of the isotopologues of methane from the
Atmospheric Chemistry Experiment Fourier transform spectrometer, Atmos. Meas.
Tech., 9, 1095–1111, https://doi.org/10.5194/amt-9-1095-2016, 2016.
Ceccherini, S. and Ridolfi, M.: Technical Note: Variance-covariance matrix
and averaging kernels for the Levenberg-Marquardt solution of the retrieval
of atmospheric vertical profiles, Atmos. Chem. Phys., 10, 3131–3139,
https://doi.org/10.5194/acp-10-3131-2010, 2010.
Craig, H.: Isotopic standards for carbon and oxygen and correction factors
for mass-spectrometric analysis of carbon dioxide, Geochim. Cosmochim. Ac.,
12, 133–149, https://doi.org/10.1016/0016-7037(57)90024-8, 1957.
Dudhia, A.: The Reference Forward Model (RFM), J. Quant. Spectrosc. Ra., 186,
243–253, https://doi.org/10.1016/j.jqsrt.2016.06.018, 2017.
Eguchi, N., Saito, R., Saeki, T., Nakatsuka, Y., Belikov, D., and Maksyutov,
S.: A priori covariance estimation for CO2 and CH4 retrievals, J.
Geophys. Res., 115, D10215, https://doi.org/10.1029/2009JD013269, 2010.
Etiope, G.: Natural emissions of methane from geological seepage in Europe,
Atmos. Environ., 43, 1430–1443, https://doi.org/10.1016/j.atmosenv.2008.03.014, 2009.
Fisher, R. E., France, J. L., Lowry, D., Lanoisellé, M., Brownlow, R.,
Pyle, J. A., Cain, M., Warwick, N., Skiba, U. M., Drewer, J., Dinsmore, K.
J., Leeson, S. R., Bauguitte, S. J.-B., Wellpott, A., O'Shea, S. J., Allen,
G., Gallagher, M. W., Pitt, J., Percival, C. J., Bower, K., George, C.,
Hayman, G. D., Aalto, T., Lohila, A., Aurela, M., Laurila, T., Crill, P. M.,
McCalley, C. K., and Nisbet, E. G.: Measurement of the 13 C isotopic
signature of methane emissions from northern European wetlands, Global
Biogeochem. Cy., 31, 605–623, https://doi.org/10.1002/2016GB005504, 2017.
Frankenberg, C., Aben, I., Bergamaschi, P., Dlugokencky, E. J., van Hees, R.,
Houweling, S., van der Meer, P., Snel, R., and Tol, P.: Global
column-averaged methane mixing ratios from 2003 to 2009 as derived from
SCIAMACHY: Trends and variability, J. Geophys. Res., 116, D04302,
https://doi.org/10.1029/2010JD014849, 2011.
Frankenberg, C., Hasekamp, O., O'Dell, C., Sanghavi, S., Butz, A., and
Worden, J.: Aerosol information content analysis of multi-angle high spectral
resolution measurements and its benefit for high accuracy greenhouse gas
retrievals, Atmos. Meas. Tech., 5, 1809–1821,
https://doi.org/10.5194/amt-5-1809-2012, 2012.
GOSAT-2 Project Team: GOSAT-2 Project Site – About GOSAT-2, NIES, available
at: http://www.gosat-2.nies.go.jp/about/spacecraft_and_instruments/,
last access: 7 December 2017.
Heimann, M.: Enigma of the recent methane budget, Nature, 476, 157–158,
https://doi.org/10.1029/2009GL039780, 2011.
Herbin, H., Labonnote, L. C., and Dubuisson, P.: Multispectral information
from TANSO-FTS instrument – Part 1: Application to greenhouse gases
(CO2 and CH4) in clear sky conditions, Atmos. Meas. Tech., 6,
3301–3311, https://doi.org/10.5194/amt-6-3301-2013, 2013.
Hu, H., Hasekamp, O., Butz, A., Galli, A., Landgraf, J., Aan de Brugh, J.,
Borsdorff, T., Scheepmaker, R., and Aben, I.: The operational methane
retrieval algorithm for TROPOMI, Atmos. Meas. Tech., 9, 5423–5440,
https://doi.org/10.5194/amt-9-5423-2016, 2016.
Illingworth, S. M., Allen, G., Newman, S., Vance, A., Marenco, F., Harlow, R.
C., Taylor, J., Moore, D. P., and Remedios, J. J.: Atmospheric composition
and thermodynamic retrievals from the ARIES airborne FTS system – Part 1:
Technical aspects and simulated capability, Atmos. Meas. Tech., 7,
1133–1150, https://doi.org/10.5194/amt-7-1133-2014, 2014.
IPCC: Fifth Assessment Report – Impacts, Adaptation and Vulnerability,
available at: http://www.ipcc.ch/report/ar5/wg2/ (last access: 12 June
2017), 2014.
Kai, F. M., Tyler, S. C., Randerson, J. T., and Blake, D. R.: Reduced methane
growth rate explained by decreased Northern Hemisphere microbial sources,
Nature, 476, 194–197, https://doi.org/10.1038/nature10259, 2011.
Khalil, M. A. K. and Rasmussen, R. A.: Global emissions of methane during the
last several centuries, Chemosphere, 29, 833–842,
https://doi.org/10.1016/0045-6535(94)90156-2, 1994.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel,
P. B., Lamarque, J. F., Langenfelds, R. L., Le Quéré, C., Naik, V.,
O'doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R.
G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T.,
Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa,
S., Van Der Werf, G. R., Voulgarakis, A., Van Weele, M., Weiss, R. F.,
Williams, J. E., and Zeng, G.: Three decades of global methane sources and
sinks, Nat. Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013.
Kuai, L., Natraj, V., Shia, R.-L., Miller, C., and Yung, Y. L.: Channel
selection using information content analysis: A case study of CO2
retrieval from near infrared measurements, J. Quant. Spectrosc. Ra., 111,
1296–1304, https://doi.org/10.1016/j.jqsrt.2010.02.011, 2010.
Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and near infrared
sensor for carbon observation Fourier-transform spectrometer on the
Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Appl.
Optics, 48, 6716, https://doi.org/10.1364/AO.48.006716, 2009.
Levin, I., Bergamaschi, P., Don, H., and Trapp, D.: Stable isotopic signature
of methane from major sources in Germany, Chemosphere, 26, 161–177,
https://doi.org/10.1016/0045-6535(93)90419-6, 1993.
Lyulin, O. M., Kassi, S., Sung, K., Brown, L. R., and Campargue, A.:
Determination of the low energy values of 13CH4 transitions in the
2ν3 region near 1.66 µm from absorption spectra at 296 and
81 K, J. Mol. Spectrosc., 261, 91–100, https://doi.org/10.1016/j.jms.2010.03.008, 2010.
Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D., Fisher, R. E.,
France, J. L., Michel, S. E., Miller, J. B., White, J. W. C., Vaughn, B.,
Bousquet, P., Pyle, J. A., Warwick, N. J., Cain, M., Brownlow, R., Zazzeri,
G., Lanoisellé, M., Manning, A. C., Gloor, E., Worthy, D. E. J., Brunke,
E.-G., Labuschagne, C., Wolff, E. W., and Ganesan, A. L.: Rising atmospheric
methane: 2007–2014 growth and isotopic shift, Global Biogeochem. Cy., 30,
1356–1370, https://doi.org/10.1002/2016GB005406, 2016.
Parker, R., Boesch, H., Cogan, A., Fraser, A., Feng, L., Palmer, P. I.,
Messerschmidt, J., Deutscher, N., Griffith, D. W. T., Notholt, J., Wennberg,
P. O., and Wunch, D.: Methane observations from the Greenhouse Gases
Observing SATellite: Comparison to ground-based TCCON data and model
calculations, Geophys. Res. Lett., 38, L15807, https://doi.org/10.1029/2011GL047871,
2011.
Parker, R. J., Boesch, H., Byckling, K., Webb, A. J., Palmer, P. I., Feng,
L., Bergamaschi, P., Chevallier, F., Notholt, J., Deutscher, N., Warneke, T.,
Hase, F., Sussmann, R., Kawakami, S., Kivi, R., Griffith, D. W. T., and
Velazco, V.: Assessing 5 years of GOSAT Proxy XCH4 data and associated
uncertainties, Atmos. Meas. Tech., 8, 4785–4801,
https://doi.org/10.5194/amt-8-4785-2015, 2015.
Reuter, M., Bovensmann, H., Buchwitz, M., Burrows, J. P., Deutscher, N. M.,
Heymann, J., Rozanov, A., Schneising, O., Suto, H., Toon, G. C., and Warneke,
T.: On the potential of the 2041–2047 nm spectral region for remote sensing
of atmospheric CO2 isotopologues, J. Quant. Spectrosc. Ra., 113,
2009–2017, https://doi.org/10.1016/j.jqsrt.2012.07.013, 2012.
Rigby, M., Manning, A. J., and Prinn, R. G.: The value of high-frequency,
high-precision methane isotopologue measurements for source and sink
estimation, J. Geophys. Res.-Atmos., 117, D12312, https://doi.org/10.1029/2011JD017384,
2012.
Röckmann, T., Brass, M., Borchers, R., and Engel, A.: The isotopic
composition of methane in the stratosphere: high-altitude balloon sample
measurements, Atmos. Chem. Phys., 11, 13287–13304,
https://doi.org/10.5194/acp-11-13287-2011, 2011.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding – Theory and
Practice, World Scientific, Singapore, 2000.
Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F.,
Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J.-P., Chance,
K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache,
R. R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W. J.,
Mandin, J.-Y., Massie, S. T., Mikhailenko, S. N., Miller, C. E.,
Moazzen-Ahmadi, N., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov,
V. I., Perrin, A., Predoi-Cross, A., Rinsland, C. P., Rotger, M.,
Šimečková, M., Smith, M. A. H., Sung, K., Tashkun, S. A.,
Tennyson, J., Toth, R. A., Vandaele, A. C., and Vander Auwera, J.: The HITRAN
2008 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 110,
533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D.,
Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue,
A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J.,
Fayt, A., Flaud, J. M., Gamache, R. R., Harrison, J. J., Hartmann, J. M.,
Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R.
J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T.,
Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V.,
Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith,
M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C.,
Tyuterev, V. G., and Wagner, G.: The HITRAN2012 molecular spectroscopic
database, J. Quant. Spectrosc. Ra., 130, 4–50,
https://doi.org/10.1016/j.jqsrt.2013.07.002, 2013.
Saeki, T., Saito, R., Belikov, D., and Maksyutov, S.: Global high-resolution
simulations of CO2 and CH4 using a NIES transport model to produce
a priori concentrations for use in satellite data retrievals, Geosci. Model
Dev., 6, 81–100, https://doi.org/10.5194/gmd-6-81-2013, 2013.
Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford, G.
W., Bromley, T. M., Dlugokencky, E. J., Michel, S. E., Miller, J. B., Levin,
I., Lowe, D. C., Martin, R. J., Vaughn, B. H., and White, J. W. C.: A
21st-century shift from fossil-fuel to biogenic methane emissions indicated
by 13CH4, Science, 352, 80–84, https://doi.org/10.1126/science.aad2705, 2016.
Schepers, D., Guerlet, S., Butz, A., Landgraf, J., Frankenberg, C., Hasekamp,
O., Blavier, J. F., Deutscher, N. M., Griffith, D. W. T., Hase, F., Kyro, E.,
Morino, I., Sherlock, V., Sussmann, R., and Aben, I.: Methane retrievals from
Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements:
Performance comparison of proxy and physics retrieval algorithms, J. Geophys.
Res.-Atmos., 117, D10307, https://doi.org/10.1029/2012JD017549, 2012.
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope,
G., Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., White,
J. W. C., and Tans, P. P.: Upward revision of global fossil fuel methane
emissions based on isotope database, Nature, 538, 88–91,
https://doi.org/10.1038/nature19797, 2016.
Sherwood, O., Schwietzke, S., Arling, V., and Etiope, G.: Global Inventory of
Fossil and Non-fossil Methane δ13C Source Signature Measurements
for Improved Atmospheric Modeling, NOAA, https://doi.org/10.15138/G37P4D, 2016.
Takagi, H., Houweling, S., Andres, R. J., Belikov, D., Bril, A., Boesch, H.,
Butz, A., Guerlet, S., Hasekamp, O., Maksyutov, S., Morino, I., Oda, T.,
O'Dell, C. W., Oshchepkov, S., Parker, R., Saito, M., Uchino, O., Yokota, T.,
Yoshida, Y., and Valsala, V.: Influence of differences in current GOSAT
XCO2 retrievals on surface flux estimation, Geophys. Res. Lett., 41,
2598–2605, https://doi.org/10.1002/2013GL059174, 2014.
Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W.,
Gillotay, D., Simon, P. C., and Mandel, H.: The solar spectral irradiance
from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS
and EURECA missions, Sol. Phys., 214, 1–22, https://doi.org/10.1023/A:1024048429145,
2003.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial
formation and oxidation of methane, Chem. Geol., 161, 291–314,
https://doi.org/10.1016/S0009-2541(99)00092-3, 1999.
Worden, J., Liu, X., Bowman, K., Chance, K., Beer, R., Eldering, A., Gunson,
M., and Worden, H.: Improved tropospheric ozone profile retrievals using OMI
and TES radiances, Geophys. Res. Lett., 34, L01809,
https://doi.org/10.1029/2006GL027806, 2007.
Wuebbles, D. and Hayhoe, K.: Atmospheric methane and global change,
Earth-Sci. Rev., 57, 177–210, https://doi.org/10.1016/S0012-8252(01)00062-9, 2002.
Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J.,
Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The
Total Carbon Column Observing Network, Philos. T. Roy. Soc. A, 369,
2087–2112, https://doi.org/10.1098/rsta.2010.0240, 2011.
Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., Morino,
I., and Yokota, T.: Retrieval algorithm for CO2 and CH4 column
abundances from short-wavelength infrared spectral observations by the
Greenhouse gases observing satellite, Atmos. Meas. Tech., 4, 717–734,
https://doi.org/10.5194/amt-4-717-2011, 2011.
Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A.,
Saeki, T., Schutgens, N., Toon, G. C., Wunch, D., Roehl, C. M., Wennberg, P.
O., Griffith, D. W. T., Deutscher, N. M., Warneke, T., Notholt, J., Robinson,
J., Sherlock, V., Connor, B., Rettinger, M., Sussmann, R., Ahonen, P.,
Heikkinen, P., Kyrö, E., Mendonca, J., Strong, K., Hase, F., Dohe, S.,
and Yokota, T.: Improvement of the retrieval algorithm for GOSAT SWIR
XCO2 and XCH4 and their validation using TCCON data, Atmos. Meas.
Tech., 6, 1533–1547, https://doi.org/10.5194/amt-6-1533-2013, 2013.
Short summary
We present an assessment of the predicted information content and retrieval errors for 13CH4 retrieval from the planned GOSAT-2 satellite, assuming a wide range of land surface conditions. Retrieval of this quantity may allow for estimation of methane source types (e.g. biological or non-biological) based on the δ13C metric. We conclude that GOSAT-2 can be used for this purpose (to an accuracy of 10 ‰) assuming sufficient spatial (regional) and temporal (at least monthly) averaging.
We present an assessment of the predicted information content and retrieval errors for 13CH4...