Articles | Volume 11, issue 10
Atmos. Meas. Tech., 11, 5741–5765, 2018
https://doi.org/10.5194/amt-11-5741-2018
Atmos. Meas. Tech., 11, 5741–5765, 2018
https://doi.org/10.5194/amt-11-5741-2018

Research article 18 Oct 2018

Research article | 18 Oct 2018

MODIS Collection 6 MAIAC algorithm

Alexei Lyapustin et al.

Related authors

Inferring iron oxides species content in atmospheric mineral dust from DSCOVR EPIC observations
Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-599,https://doi.org/10.5194/acp-2021-599, 2021
Preprint under review for ACP
Short summary
Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David Giles, and Pablo E. Saide
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-223,https://doi.org/10.5194/acp-2021-223, 2021
Revised manuscript accepted for ACP
Short summary
Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring
Cheng Chen, Oleg Dubovik, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Fabrice Ducos, Yevgeny Derimian, Maurice Herman, Didier Tanré, Lorraine A. Remer, Alexei Lyapustin, Andrew M. Sayer, Robert C. Levy, N. Christina Hsu, Jacques Descloitres, Lei Li, Benjamin Torres, Yana Karol, Milagros Herrera, Marcos Herreras, Michael Aspetsberger, Moritz Wanzenboeck, Lukas Bindreiter, Daniel Marth, Andreas Hangler, and Christian Federspiel
Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020,https://doi.org/10.5194/essd-12-3573-2020, 2020
Short summary
An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020,https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Gradient boosting machine learning to improve satellite-derived column water vapor measurement error
Allan C. Just, Yang Liu, Meytar Sorek-Hamer, Johnathan Rush, Michael Dorman, Robert Chatfield, Yujie Wang, Alexei Lyapustin, and Itai Kloog
Atmos. Meas. Tech., 13, 4669–4681, https://doi.org/10.5194/amt-13-4669-2020,https://doi.org/10.5194/amt-13-4669-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrievals of dust-related particle mass and ice-nucleating particle concentration profiles with ground-based polarization lidar and sun photometer over a megacity in central China
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021,https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Introducing the MISR level 2 near real-time aerosol product
Marcin L. Witek, Michael J. Garay, David J. Diner, Michael A. Bull, Felix C. Seidel, Abigail M. Nastan, and Earl G. Hansen
Atmos. Meas. Tech., 14, 5577–5591, https://doi.org/10.5194/amt-14-5577-2021,https://doi.org/10.5194/amt-14-5577-2021, 2021
Short summary
Estimation of PM2.5 concentration in China using linear hybrid machine learning model
Zhihao Song, Bin Chen, Yue Huang, Li Dong, and Tingting Yang
Atmos. Meas. Tech., 14, 5333–5347, https://doi.org/10.5194/amt-14-5333-2021,https://doi.org/10.5194/amt-14-5333-2021, 2021
Short summary
Species correlation measurements in turbulent flare plumes: considerations for field measurements
Scott P. Seymour and Matthew R. Johnson
Atmos. Meas. Tech., 14, 5179–5197, https://doi.org/10.5194/amt-14-5179-2021,https://doi.org/10.5194/amt-14-5179-2021, 2021
Short summary
Retrieval of aerosol microphysical properties from atmospheric lidar sounding: an investigation using synthetic measurements and data from the ACEPOL campaign
William G. K. McLean, Guangliang Fu, Sharon P. Burton, and Otto P. Hasekamp
Atmos. Meas. Tech., 14, 4755–4771, https://doi.org/10.5194/amt-14-4755-2021,https://doi.org/10.5194/amt-14-4755-2021, 2021
Short summary

Cited articles

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear-sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998. 
Ackerman, S., Frey, R., Strabala, Liu, Y., Gumley, L., Baum, B., and Menzel, P.: Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35), 121 pp., available at: https://modis-atmos.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD35_ATBD_Collection6_0.pdf (last access: 9 October 2018), 2010. 
Albert, P., Bennartz, R., Preusker, R., Leinweber, R., and Fischer, J.: Remote Sensing of Atmospheric Water Vapor Using the Moderate Resolution Imaging Spectroradiometer, J. Atmos. Ocean. Tech., 22, 309–314, https://doi.org/10.1175/JTECH1708.1, 2005. 
Bi, J., Knyazikhin, Y., Choi, S., Park, T., Barichivich, J., Ciais, P., Fu, R., Ganguly, S., Hall, F., Hilker, T., Huete, A., Jones, M., Kimball, J., Lyapustin, A., Mottus, M., Nemani, R., Piao, S., Poulter, B., Saleska, S., Saatchi, S., Xu, L., Zhou, L., and Myneni, R.: Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests, Environ. Res. Lett., 10, 064014; https://doi.org/10.1088/1748-9326/10/6/064014, 2015. 
Download
Short summary
MAIAC algorithm used for the MODIS C6 processing is described. MAIAC combines time series analysis and pixel/image-based processing to improve the accuracy of cloud detection, aerosol retrievals and atmospheric correction. MAIAC offers an interdisciplinary suite of atmospheric, land surface and snow products. Due to generally high quality, high resolution and high coverage, MAIAC AOD and surface reflectance/BRDF have been widely used for air quality and land research and applications.