Articles | Volume 11, issue 11
Atmos. Meas. Tech., 11, 6091–6106, 2018
https://doi.org/10.5194/amt-11-6091-2018
Atmos. Meas. Tech., 11, 6091–6106, 2018
https://doi.org/10.5194/amt-11-6091-2018
Research article
09 Nov 2018
Research article | 09 Nov 2018

Evaluation of OAFlux datasets based on in situ air–sea flux tower observations over Yongxing Island in 2016

Fenghua Zhou et al.

Related authors

Wind and wave dataset for Matara, Sri Lanka
Yao Luo, Dongxiao Wang, Tilak Priyadarshana Gamage, Fenghua Zhou, Charith Madusanka Widanage, and Taiwei Liu
Earth Syst. Sci. Data, 10, 131–138, https://doi.org/10.5194/essd-10-131-2018,https://doi.org/10.5194/essd-10-131-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Characterizing and correcting the warm bias observed in Aircraft Meteorological Data Relay (AMDAR) temperature observations
Siebren de Haan, Paul M. A. de Jong, and Jitze van der Meulen
Atmos. Meas. Tech., 15, 811–818, https://doi.org/10.5194/amt-15-811-2022,https://doi.org/10.5194/amt-15-811-2022, 2022
Short summary
Boundary-layer height and surface stability at SMEAR II, Hyytiälä, Finland in ERA5 and observations
Victoria Anne Sinclair, Jenna Ritvanen, Gabin Urbancic, Irina Statnaia, Yurii Batrak, Dmitri Moisseev, and Mona Kurppa
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-295,https://doi.org/10.5194/amt-2021-295, 2021
Revised manuscript accepted for AMT
Short summary
Something fishy going on? Evaluating the Poisson hypothesis for rainfall estimation using intervalometers: results from an experiment in Tanzania
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021,https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and higher-order moments at the forest–air interface
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021,https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021,https://doi.org/10.5194/amt-14-2167-2021, 2021
Short summary

Cited articles

Brunke, M. A., Fairall, C. W., Zeng, X., Eymard, L., and Curry, J. A.: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes?, J. Climate, 16, 619–635, https://doi.org/10.1175/1520-0442(2003)016<0619:WBAAAL>2.0.CO;2, 2003. 
Campbell Scientific, Inc.: CR3000 Micrologger User's Manual, available at: https://s.campbellsci.com/documents/us/manuals/cr3000.pdf, last access: 21 March 2018. 
Chelton, D. and Xie, S.-P.: Coupled Ocean-atmosphere interaction at oceanic mesoscales, Oceanography, 23, 52–69, https://doi.org/10.5670/oceanog.2010.05, 2010. 
Chen, J., Zuo, T., and Wang, H.: Variation of latent heat flux over the Bengal Bay-South China Sea area and its relationship with South China Sea summer monsoon onset, Int. Geosci. Remote Se., Munich, Germany, 22–27 July 2012, 856–859, 2012. 
Crawford, T. L., McMillen, R. T., Meyers, T. P., and Hicks, B. B.: Spatial and temporal variability of heat, water vapor, carbon dioxide, and momentum air-sea exchange in a coastal environment, J. Geophys. Res., 98, 12869–12880, https://doi.org/10.1029/93jd00628, 1993. 
Download
Short summary
In this work, successive air–sea heat flux-related data were acquired over the course of a year (01/02/2016–31/01/2017) at the YXASFT on Yongxing Island. Then, seasonal comparisons were conducted for the daily mean surface bulk variables and heat fluxes between the WHOI OAFlux products and YXASFT observations. The conclusions in this paper will provide useful reference for researchers on how to select the appropriate OAFlux datasets in different seasons over the South China Sea.