Articles | Volume 12, issue 7
https://doi.org/10.5194/amt-12-3789-2019
https://doi.org/10.5194/amt-12-3789-2019
Research article
 | 
11 Jul 2019
Research article |  | 11 Jul 2019

Aerosol-type classification based on AERONET version 3 inversion products

Sung-Kyun Shin, Matthias Tesche, Youngmin Noh, and Detlef Müller

Related authors

Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes
Sung-Kyun Shin, Matthias Tesche, Detlef Müller, and Youngmin Noh
Atmos. Meas. Tech., 12, 607–618, https://doi.org/10.5194/amt-12-607-2019,https://doi.org/10.5194/amt-12-607-2019, 2019
Short summary
On the spectral depolarisation and lidar ratio of mineral dust provided in the AERONET version 3 inversion product
Sung-Kyun Shin, Matthias Tesche, Kwanchul Kim, Maria Kezoudi, Boyan Tatarov, Detlef Müller, and Youngmin Noh
Atmos. Chem. Phys., 18, 12735–12746, https://doi.org/10.5194/acp-18-12735-2018,https://doi.org/10.5194/acp-18-12735-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Producing aerosol size distributions consistent with optical particle counter measurements using space-based measurements of aerosol extinction coefficient
Nicholas Ernest, Larry W. Thomason, and Terry Deshler
Atmos. Meas. Tech., 18, 2957–2968, https://doi.org/10.5194/amt-18-2957-2025,https://doi.org/10.5194/amt-18-2957-2025, 2025
Short summary
Star photometry with all-sky cameras to retrieve aerosol optical depth at nighttime
Roberto Román, Daniel González-Fernández, Juan Carlos Antuña-Sánchez, Celia Herrero del Barrio, Sara Herrero-Anta, África Barreto, Victoria E. Cachorro, Lionel Doppler, Ramiro González, Christoph Ritter, David Mateos, Natalia Kouremeti, Gustavo Copes, Abel Calle, María José Granados-Muñoz, Carlos Toledano, and Ángel M. de Frutos
Atmos. Meas. Tech., 18, 2847–2875, https://doi.org/10.5194/amt-18-2847-2025,https://doi.org/10.5194/amt-18-2847-2025, 2025
Short summary
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, David P. Donovan, Gerd-Jan van Zadelhoff, and J. Pepijn Veefkind
Atmos. Meas. Tech., 18, 2553–2571, https://doi.org/10.5194/amt-18-2553-2025,https://doi.org/10.5194/amt-18-2553-2025, 2025
Short summary
Using neural networks for near-real-time aerosol retrievals from OMPS Limb Profiler measurements
Michael D. Himes, Ghassan Taha, Daniel Kahn, Tong Zhu, and Natalya A. Kramarova
Atmos. Meas. Tech., 18, 2523–2536, https://doi.org/10.5194/amt-18-2523-2025,https://doi.org/10.5194/amt-18-2523-2025, 2025
Short summary
Retrieval algorithm for aerosol effective height from the Geostationary Environment Monitoring Spectrometer (GEMS)
Sang Seo Park, Jhoon Kim, Yeseul Cho, Hanlim Lee, Junsung Park, Dong-Won Lee, Won-Jin Lee, and Deok-Rae Kim
Atmos. Meas. Tech., 18, 2241–2259, https://doi.org/10.5194/amt-18-2241-2025,https://doi.org/10.5194/amt-18-2241-2025, 2025
Short summary

Cited articles

Aerosol Robotic Network (AERONET): available at: https://aeronet.gsfc.nasa.gov/, 9 July 2019. a, b
Bellouin, N., Quaas, J., Morcrette, J.-J., and Boucher, O.: Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys., 13, 2045–2062, https://doi.org/10.5194/acp-13-2045-2013, 2013. a
Bergstrom, R. W., Russell, P. B., and Hignett, P.: Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo, J. Atmos. Sci., 59, 568–578, 2002. a
Bohren, C. and Huffman, D.: Absorbing and scattering of light by small particles, Wiley, https://doi.org/10.1002/9783527618156, 1983. a, b
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006. a
Download
Short summary
This study proposes an aerosol-type classification based on parameters from the AErosol RObotic NETwork (AERONET) version 3 level 2.0 inversion product that describe light depolarization and absorption properties of atmospheric particles. We compare our classification with an earlier method and find that the new approach allows for a refined classification of mineral dust that occurs as a mixture with other absorbing aerosols.
Share