Articles | Volume 13, issue 3
https://doi.org/10.5194/amt-13-1113-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-1113-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scanning polarization lidar LOSA-M3: opportunity for research of crystalline particle orientation in the ice clouds
Grigorii P. Kokhanenko
CORRESPONDING AUTHOR
V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Tomsk, Russia
Yurii S. Balin
V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Tomsk, Russia
Marina G. Klemasheva
V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Tomsk, Russia
Sergei V. Nasonov
V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Tomsk, Russia
Mikhail M. Novoselov
V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Tomsk, Russia
Iogannes E. Penner
V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Tomsk, Russia
Svetlana V. Samoilova
V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Tomsk, Russia
Related authors
Antonin Zabukovec, Gerard Ancellet, Iwan E. Penner, Mikhail Arshinov, Valery Kozlov, Jacques Pelon, Jean-Daniel Paris, Grigory Kokhanenko, Yuri S. Balin, Dmitry Chernov, and Boris D. Belan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-195, https://doi.org/10.5194/acp-2020-195, 2020
Preprint withdrawn
Short summary
Short summary
Description of two aircraft campaigns results carried out over Siberia in 2013 and 2017 to characterize aerosol emission. A methodology is proposed to derive the aerosol types using transport model and satellite observations. The extinction to backscatter ratio for each aerosol types is reported as it is a key parameter to constrain their radiative impact. These results are compared to previous work conducted in other regions and to aerosol data products observed by spaceborne lidars.
Gerard Ancellet, Iogannes E. Penner, Jacques Pelon, Vincent Mariage, Antonin Zabukovec, Jean Christophe Raut, Grigorii Kokhanenko, and Yuri S. Balin
Atmos. Meas. Tech., 12, 147–168, https://doi.org/10.5194/amt-12-147-2019, https://doi.org/10.5194/amt-12-147-2019, 2019
Short summary
Short summary
Aerosol type seasonal variability and sources in Siberia are obtained from an automatic 808 nm micropulse lidar. A total of 540 aerosol backscatter vertical profiles have been retrieved using careful lidar calibration. Aerosol optical depth is retrieved using sun-photometer complementary observations and an aerosol source apportionment based on aerosol transport model simulations. Comparisons with satellite observations are discussed for three case studies.
G. G. Matvienko, B. D. Belan, M. V. Panchenko, O. A. Romanovskii, S. M. Sakerin, D. M. Kabanov, S. A. Turchinovich, Y. S. Turchinovich, T. A. Eremina, V. S. Kozlov, S. A. Terpugova, V. V. Pol'kin, E. P. Yausheva, D. G. Chernov, T. B. Zhuravleva, T. V. Bedareva, S. L. Odintsov, V. D. Burlakov, A. V. Nevzorov, M. Y. Arshinov, G. A. Ivlev, D. E. Savkin, A. V. Fofonov, V. A. Gladkikh, A. P. Kamardin, Y. S. Balin, G. P. Kokhanenko, I. E. Penner, S. V. Samoilova, P. N. Antokhin, V. G. Arshinova, D. K. Davydov, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. B. Belan, V. P. Shmargunov, A. S. Kozlov, and S. B. Malyshkin
Atmos. Meas. Tech., 8, 4507–4520, https://doi.org/10.5194/amt-8-4507-2015, https://doi.org/10.5194/amt-8-4507-2015, 2015
Short summary
Short summary
The primary objective of the Complex Aerosol Experiment was measurement of microphysical, chemical, and optical properties of aerosol particles in the surface air layer and free atmosphere. The measurement data were used to retrieve the whole set of aerosol optical parameters, necessary for radiation calculations. Three measurement cycles were performed within the experiment during 2013: in spring, summer (July), and in late summer/early autumn.
Boris D. Belan, Gerard Ancellet, Irina S. Andreeva, Pavel N. Antokhin, Viktoria G. Arshinova, Mikhail Y. Arshinov, Yurii S. Balin, Vladimir E. Barsuk, Sergei B. Belan, Dmitry G. Chernov, Denis K. Davydov, Alexander V. Fofonov, Georgii A. Ivlev, Sergei N. Kotel'nikov, Alexander S. Kozlov, Artem V. Kozlov, Katharine Law, Andrey V. Mikhal'chishin, Igor A. Moseikin, Sergei V. Nasonov, Philippe Nédélec, Olesya V. Okhlopkova, Sergei E. Ol'kin, Mikhail V. Panchenko, Jean-Daniel Paris, Iogannes E. Penner, Igor V. Ptashnik, Tatyana M. Rasskazchikova, Irina K. Reznikova, Oleg A. Romanovskii, Alexander S. Safatov, Denis E. Savkin, Denis V. Simonenkov, Tatyana K. Sklyadneva, Gennadii N. Tolmachev, Semyon V. Yakovlev, and Polina N. Zenkova
Atmos. Meas. Tech., 15, 3941–3967, https://doi.org/10.5194/amt-15-3941-2022, https://doi.org/10.5194/amt-15-3941-2022, 2022
Short summary
Short summary
The change of the global climate is most pronounced in the Arctic, where the air temperature increases faster than the global average. This is associated with an increase in the concentration of greenhouse gases in the atmosphere. It is important to study how the air composition in the Arctic changes in the changing climate. Thus this integrated experiment was carried out to measure the composition of the troposphere in the Russian sector of the Arctic from on board the aircraft laboratory.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Antonin Zabukovec, Gerard Ancellet, Iwan E. Penner, Mikhail Arshinov, Valery Kozlov, Jacques Pelon, Jean-Daniel Paris, Grigory Kokhanenko, Yuri S. Balin, Dmitry Chernov, and Boris D. Belan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-195, https://doi.org/10.5194/acp-2020-195, 2020
Preprint withdrawn
Short summary
Short summary
Description of two aircraft campaigns results carried out over Siberia in 2013 and 2017 to characterize aerosol emission. A methodology is proposed to derive the aerosol types using transport model and satellite observations. The extinction to backscatter ratio for each aerosol types is reported as it is a key parameter to constrain their radiative impact. These results are compared to previous work conducted in other regions and to aerosol data products observed by spaceborne lidars.
Gerard Ancellet, Iogannes E. Penner, Jacques Pelon, Vincent Mariage, Antonin Zabukovec, Jean Christophe Raut, Grigorii Kokhanenko, and Yuri S. Balin
Atmos. Meas. Tech., 12, 147–168, https://doi.org/10.5194/amt-12-147-2019, https://doi.org/10.5194/amt-12-147-2019, 2019
Short summary
Short summary
Aerosol type seasonal variability and sources in Siberia are obtained from an automatic 808 nm micropulse lidar. A total of 540 aerosol backscatter vertical profiles have been retrieved using careful lidar calibration. Aerosol optical depth is retrieved using sun-photometer complementary observations and an aerosol source apportionment based on aerosol transport model simulations. Comparisons with satellite observations are discussed for three case studies.
G. G. Matvienko, B. D. Belan, M. V. Panchenko, O. A. Romanovskii, S. M. Sakerin, D. M. Kabanov, S. A. Turchinovich, Y. S. Turchinovich, T. A. Eremina, V. S. Kozlov, S. A. Terpugova, V. V. Pol'kin, E. P. Yausheva, D. G. Chernov, T. B. Zhuravleva, T. V. Bedareva, S. L. Odintsov, V. D. Burlakov, A. V. Nevzorov, M. Y. Arshinov, G. A. Ivlev, D. E. Savkin, A. V. Fofonov, V. A. Gladkikh, A. P. Kamardin, Y. S. Balin, G. P. Kokhanenko, I. E. Penner, S. V. Samoilova, P. N. Antokhin, V. G. Arshinova, D. K. Davydov, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. B. Belan, V. P. Shmargunov, A. S. Kozlov, and S. B. Malyshkin
Atmos. Meas. Tech., 8, 4507–4520, https://doi.org/10.5194/amt-8-4507-2015, https://doi.org/10.5194/amt-8-4507-2015, 2015
Short summary
Short summary
The primary objective of the Complex Aerosol Experiment was measurement of microphysical, chemical, and optical properties of aerosol particles in the surface air layer and free atmosphere. The measurement data were used to retrieve the whole set of aerosol optical parameters, necessary for radiation calculations. Three measurement cycles were performed within the experiment during 2013: in spring, summer (July), and in late summer/early autumn.
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Instruments and Platforms
Shortwave Array Spectroradiometer-Hemispheric (SAS-He): design and evaluation
Enhancing mobile aerosol monitoring with CE376 dual-wavelength depolarization lidar
Assessment of the spectral misalignment effect (SMILE) on EarthCARE's Multi-Spectral Imager aerosol and cloud property retrievals
The EarthCARE lidar cloud and aerosol profile processor (A-PRO): the A-AER, A-EBD, A-TC and A-ICE products
The Langley ratio method, a new approach for transferring photometer calibration from direct sun measurements
Multi-star calibration in starphotometry
Continuous observations from horizontally pointing lidar, weather parameters and PM2.5: a pre-deployment assessment for monitoring radioactive dust in Fukushima, Japan
Multiwavelength fluorescence lidar observations of smoke plumes
Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic
Earth observations from the Moon's surface: dependence on lunar libration
Relationship between the sub-micron fraction (SMF) and fine-mode fraction (FMF) in the context of AERONET retrievals
Systematic analysis of virga and its impact on surface particulate matter observations
Spectrometric fluorescence and Raman lidar: absolute calibration of aerosol fluorescence spectra and fluorescence correction of humidity measurements
The polarimetric characteristics of dust with irregular shapes: evaluation of the spheroid model for single particles
The eVe reference polarisation lidar system for the calibration and validation of the Aeolus L2A product
Evaluation of aerosol microphysical, optical and radiative properties measured with a multiwavelength photometer
Polarization lidar for detecting dust orientation: system design and calibration
Accuracy in starphotometry
Rethinking the correction for absorbing aerosols in the OMI- and TROPOMI-like surface UV algorithms
Mie–Raman–fluorescence lidar observations of aerosols during pollen season in the north of France
Satellite imagery and products of the 16–17 February 2020 Saharan Air Layer dust event over the eastern Atlantic: impacts of water vapor on dust detection and morphology
Combined use of Mie–Raman and fluorescence lidar observations for improving aerosol characterization: feasibility experiment
Solar radiometer sensing of multi-year aerosol features over a tropical urban station: direct-Sun and inversion products
An overview of and issues with sky radiometer technology and SKYNET
The polarized Sun and sky radiometer SSARA: design, calibration, and application for ground-based aerosol remote sensing
Nocturnal aerosol optical depth measurements with modified sky radiometer POM-02 using the moon as a light source
Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar
Monitoring aerosols over Europe: an assessment of the potential benefit of assimilating the VIS04 measurements from the future MTG/FCI geostationary imager
The impact of MISR-derived injection height initialization on wildfire and volcanic plume dispersion in the HYSPLIT model
The instrument constant of sky radiometers (POM-02) – Part 1: Calibration constant
The instrument constant of sky radiometers (POM-02) – Part 2: Solid view angle
Description and applications of a mobile system performing on-road aerosol remote sensing and in situ measurements
Remote sensing of aerosols with small satellites in formation flight
A study of the approaches used to retrieve aerosol extinction, as applied to limb observations made by OSIRIS and SCIAMACHY
Increased aerosol content in the atmosphere over Ukraine during summer 2010
Experimental techniques for the calibration of lidar depolarization channels in EARLINET
Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations
Using paraxial approximation to describe the optical setup of a typical EARLINET lidar system
Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes
Aerosol optical depth determination in the UV using a four-channel precision filter radiometer
A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring
Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment
1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling: cirrus case study
About the effects of polarising optics on lidar signals and the Δ90 calibration
Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers
An empirical method to correct for temperature-dependent variations in the overlap function of CHM15k ceilometers
Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites
The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation
Profiling the PM2.5 mass concentration vertical distribution in the boundary layer
The Aerosol Limb Imager: acousto-optic imaging of limb-scattered sunlight for stratospheric aerosol profiling
Evgueni Kassianov, Connor J. Flynn, James C. Barnard, Brian D. Ermold, and Jennifer M. Comstock
Atmos. Meas. Tech., 17, 4997–5013, https://doi.org/10.5194/amt-17-4997-2024, https://doi.org/10.5194/amt-17-4997-2024, 2024
Short summary
Short summary
Conventional ground-based radiometers commonly measure solar radiation at a few wavelengths within a narrow spectral range. These limitations prevent improved retrievals of aerosol, cloud, and surface characteristics. To address these limitations, an advanced ground-based radiometer with expanded spectral coverage and hyperspectral capability is introduced. Its good performance is demonstrated using reference data collected over three coastal regions with diverse types of aerosols and clouds.
Maria Fernanda Sanchez Barrero, Ioana Elisabeta Popovici, Philippe Goloub, Stephane Victori, Qiaoyun Hu, Benjamin Torres, Thierry Podvin, Luc Blarel, Gaël Dubois, Fabrice Ducos, Eric Bourrianne, Aliaksandr Lapionak, Lelia Proniewski, Brent Holben, David Matthew Giles, and Anthony LaRosa
Atmos. Meas. Tech., 17, 3121–3146, https://doi.org/10.5194/amt-17-3121-2024, https://doi.org/10.5194/amt-17-3121-2024, 2024
Short summary
Short summary
This study showcases the use of a compact elastic lidar to monitor aerosols aboard moving platforms. By coupling dual-wavelength and depolarization measurements with photometer data, we studied aerosols during events of Saharan dust and smoke transport. Our research, conducted in various scenarios, not only validated our methods but also offered insights into the atmospheric dynamics near active fires. This study aids future research to fill observational gaps in aerosol monitoring.
Nicole Docter, Anja Hünerbein, David P. Donovan, Rene Preusker, Jürgen Fischer, Jan Fokke Meirink, Piet Stammes, and Michael Eisinger
Atmos. Meas. Tech., 17, 2507–2519, https://doi.org/10.5194/amt-17-2507-2024, https://doi.org/10.5194/amt-17-2507-2024, 2024
Short summary
Short summary
MSI is the imaging spectrometer on board EarthCARE and will provide across-track information on clouds and aerosol properties. The MSI solar channels exhibit a spectral misalignment effect (SMILE) in the measurements. This paper describes and evaluates how the SMILE will affect the cloud and aerosol retrievals that do not account for it.
David Patrick Donovan, Gerd-Jan van Zadelhoff, and Ping Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-218, https://doi.org/10.5194/egusphere-2024-218, 2024
Short summary
Short summary
ATLID (“ATmospheric LIDar”) is the lidar to be flown on the Earth Clouds and Radiation Explorer satellite (EarthCARE). EarthCARE is a joint European-Japanese satellite mission scheduled for launch in 2024. ATLID is an advanced type of lidar optimized for cloud and aerosol profile measurements. ATLID will provide novel measurements, and thus, novel methods for inferring aerosol and cloud profiles have been developed. This paper provides an overview of these novel retrieval methods.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Liviu Ivănescu and Norman T. O'Neill
Atmos. Meas. Tech., 16, 6111–6121, https://doi.org/10.5194/amt-16-6111-2023, https://doi.org/10.5194/amt-16-6111-2023, 2023
Short summary
Short summary
The starphotometers' complex infrastructure prohibits calibration campaigns. On-site calibration procedures appear as the only practical solution. A multi-star approach overcomes site-specific sky transparency stability problems. Star selection strategies were proposed for mitigating some sources of errors. Data processing strategies and instrument design improvements appear necessary.
Nofel Lagrosas, Kosuke Okubo, Hitoshi Irie, Yutaka Matsumi, Tomoki Nakayama, Yutaka Sugita, Takashi Okada, and Tatsuo Shiina
Atmos. Meas. Tech., 16, 5937–5951, https://doi.org/10.5194/amt-16-5937-2023, https://doi.org/10.5194/amt-16-5937-2023, 2023
Short summary
Short summary
This work examines the near-ground aerosol–weather relationship from 7-month continuous lidar and weather observations in Chiba, Japan. Optical parameters from lidar data are compared with weather parameters to understand and quantify the aerosol–weather relationship and how these optical parameters are affected by the weather and season. The results provide insights into analyzing optical properties of radioactive aerosols when the lidar system is continuously operated in a radioactive area.
Igor Veselovskii, Nikita Kasianik, Mikhail Korenskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, and Dong Liu
Atmos. Meas. Tech., 16, 2055–2065, https://doi.org/10.5194/amt-16-2055-2023, https://doi.org/10.5194/amt-16-2055-2023, 2023
Short summary
Short summary
A five-channel fluorescence lidar was developed for the study of atmospheric aerosol. The fluorescence spectrum induced by 355 nm laser emission is analyzed in five spectral intervals, namely 438 and 29, 472 and 32, 513 and 29, 560 and 40, and 614 and 54 nm. This lidar system was operated during strong forest fires. Our results demonstrate that, for urban aerosol, the maximal fluorescence backscattering is observed at 472 nm, while for smoke, the spectrum is shifted toward longer wavelengths.
Emily D. Lenhardt, Lan Gao, Jens Redemann, Feng Xu, Sharon P. Burton, Brian Cairns, Ian Chang, Richard A. Ferrare, Chris A. Hostetler, Pablo E. Saide, Calvin Howes, Yohei Shinozuka, Snorre Stamnes, Mary Kacarab, Amie Dobracki, Jenny Wong, Steffen Freitag, and Athanasios Nenes
Atmos. Meas. Tech., 16, 2037–2054, https://doi.org/10.5194/amt-16-2037-2023, https://doi.org/10.5194/amt-16-2037-2023, 2023
Short summary
Short summary
Small atmospheric particles, such as smoke from wildfires or pollutants from human activities, impact cloud properties, and clouds have a strong influence on climate. To better understand the distributions of these particles, we develop relationships to derive their concentrations from remote sensing measurements from an instrument called a lidar. Our method is reliable for smoke particles, and similar steps can be taken to develop relationships for other particle types.
Nick Gorkavyi, Nickolay Krotkov, and Alexander Marshak
Atmos. Meas. Tech., 16, 1527–1537, https://doi.org/10.5194/amt-16-1527-2023, https://doi.org/10.5194/amt-16-1527-2023, 2023
Short summary
Short summary
The article discusses topical issues of the visible (libration) motion of the Earth in the sky of the Moon in a rectangle measuring 13.4° × 15.8°. On the one hand, the librations of the Moon make these observations difficult. On the other hand, they can be used as a natural scanning mechanism for cameras and spectroscopes mounted on a fixed platform on the surface of the Moon.
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Thomas F. Eck, Jeffrey S. Reid, David M. Giles, Daniel Pérez-Ramírez, and Jai Prakash Chaubey
Atmos. Meas. Tech., 16, 1103–1120, https://doi.org/10.5194/amt-16-1103-2023, https://doi.org/10.5194/amt-16-1103-2023, 2023
Short summary
Short summary
Aerosols are atmospheric particles that vary in size (radius) from a fraction of a micrometer (µm) to around 20 µm. They tend to be either smaller than 1 µm (like smoke or pollution) or larger than 1 µm (like dust or sea salt). Their optical effect (scattering and absorbing sunlight) can be divided into FM (fine-mode) and CM (coarse-mode) parts using a cutoff radius around 1 µm or a spectral (color) technique. We present and validate a theoretical link between the types of FM and CM divisions.
Nakul N. Karle, Ricardo K. Sakai, Rosa M. Fitzgerald, Charles Ichoku, Fernando Mercado, and William R. Stockwell
Atmos. Meas. Tech., 16, 1073–1085, https://doi.org/10.5194/amt-16-1073-2023, https://doi.org/10.5194/amt-16-1073-2023, 2023
Short summary
Short summary
Extensive virga research is uncommon, even though it is a common phenomenon. A systematic method was developed to characterize virga using available datasets. In total, 50 virga events were observed, appearing only during a specific time of the year, revealing a seasonal pattern. These virga events were identified and classified, and their impact on surface PM measurements was investigated. A more detailed examination of the selected events reveals that virga impacts regional air quality.
Jens Reichardt, Oliver Behrendt, and Felix Lauermann
Atmos. Meas. Tech., 16, 1–13, https://doi.org/10.5194/amt-16-1-2023, https://doi.org/10.5194/amt-16-1-2023, 2023
Short summary
Short summary
The UVA spectrometer is the latest instrumental addition to the spectrometric fluorescence and Raman lidar RAMSES. The redesigned receiver and the data analysis of the fluorescence measurement are described. Furthermore, the effect of aerosol fluorescence on humidity measurements is studied. It turns out that Raman lidars equipped with a spectrometer show superior performance over those with one discrete fluorescence detection channel only. The cause is variability in the fluorescence spectrum.
Jie Luo, Zhengqiang Li, Cheng Fan, Hua Xu, Ying Zhang, Weizhen Hou, Lili Qie, Haoran Gu, Mengyao Zhu, Yinna Li, and Kaitao Li
Atmos. Meas. Tech., 15, 2767–2789, https://doi.org/10.5194/amt-15-2767-2022, https://doi.org/10.5194/amt-15-2767-2022, 2022
Short summary
Short summary
A single model is difficult to represent various shapes of dust. We proposed a tunable model to represent dust with various shapes. Two tunable parameters were used to represent the effects of the erosion degree and binding forces from the mass center. Thus, the model can represent various dust shapes by adjusting the tunable parameters. Besides, the applicability of the spheroid model in calculating the optical properties and polarimetric characteristics is evaluated.
Peristera Paschou, Nikolaos Siomos, Alexandra Tsekeri, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Ioannis Binietoglou, George Tsaknakis, Alexandros Tavernarakis, Christos Evangelatos, Jonas von Bismarck, Thomas Kanitz, Charikleia Meleti, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 15, 2299–2323, https://doi.org/10.5194/amt-15-2299-2022, https://doi.org/10.5194/amt-15-2299-2022, 2022
Short summary
Short summary
The eVe lidar delivers quality-assured aerosol and cloud optical properties according to the standards of ACTRIS. It is a mobile reference system for the validation of the ESA's Aeolus satellite mission (L2 aerosol and cloud products). eVe provides linear and circular polarisation measurements with Raman capabilities. Here, we describe the system design, the polarisation calibration techniques, and the software for the retrieval of the optical products.
Yu Zheng, Huizheng Che, Yupeng Wang, Xiangao Xia, Xiuqing Hu, Xiaochun Zhang, Jun Zhu, Jibiao Zhu, Hujia Zhao, Lei Li, Ke Gui, and Xiaoye Zhang
Atmos. Meas. Tech., 15, 2139–2158, https://doi.org/10.5194/amt-15-2139-2022, https://doi.org/10.5194/amt-15-2139-2022, 2022
Short summary
Short summary
Ground-based observations of aerosols and aerosol data verification is important for satellite and climate model modification. Here we present an evaluation of aerosol microphysical, optical and radiative properties measured using a multiwavelength photometer with a highly integrated design and smart control performance. The validation of this product is discussed in detail using AERONET as a reference. This work contributes to reducing AOD uncertainties in China and combating climate change.
Alexandra Tsekeri, Vassilis Amiridis, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Spiros Metallinos, George Doxastakis, Josef Gasteiger, Nikolaos Siomos, Peristera Paschou, Thanasis Georgiou, George Tsaknakis, Christos Evangelatos, and Ioannis Binietoglou
Atmos. Meas. Tech., 14, 7453–7474, https://doi.org/10.5194/amt-14-7453-2021, https://doi.org/10.5194/amt-14-7453-2021, 2021
Short summary
Short summary
Dust orientation in the Earth's atmosphere has been an ongoing investigation in recent years, and its potential proof will be a paradigm shift for dust remote sensing. We have designed and developed a polarization lidar that provides direct measurements of dust orientation, as well as more detailed information of the particle microphysics. We provide a description of its design as well as its first measurements.
Liviu Ivănescu, Konstantin Baibakov, Norman T. O'Neill, Jean-Pierre Blanchet, and Karl-Heinz Schulz
Atmos. Meas. Tech., 14, 6561–6599, https://doi.org/10.5194/amt-14-6561-2021, https://doi.org/10.5194/amt-14-6561-2021, 2021
Short summary
Short summary
Starphotometry seeks to provide accurate measures of nocturnal optical depth (OD). It is driven by a need to characterize aerosols and their radiative forcing effects during a very data-sparse period. A sub-0.01 OD error is required to adequately characterize key aerosol parameters. We found approaches for sufficiently mitigating errors to achieve the 0.01 standard. This renders starphotometry the equal of daytime techniques and opens the door to exploiting its distinct star-pointing advantages.
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021, https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Short summary
Methods to estimate surface UV radiation from satellite measurements offer the only means to obtain global coverage, and the development of satellite-based UV algorithms has been ongoing since the early 1990s. One of the main challenges in this development has been how to account for the overall effect of absorption by atmospheric aerosols. One such method was suggested roughly a decade ago, and in this study we propose further improvements for this kind of approach.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Marie Choël, Nicolas Visez, and Mikhail Korenskiy
Atmos. Meas. Tech., 14, 4773–4786, https://doi.org/10.5194/amt-14-4773-2021, https://doi.org/10.5194/amt-14-4773-2021, 2021
Short summary
Short summary
The multiwavelength Mie–Raman–fluorescence lidar of the University of Lille was used to characterize aerosols during the pollen season in the north of France for the period March–June 2020. The results of observations demonstrate that the presence of pollen grains in aerosol mixtures leads to an increase in the depolarization ratio and to the enhancement of the fluorescence backscattering.
Lewis Grasso, Daniel Bikos, Jorel Torres, John F. Dostalek, Ting-Chi Wu, John Forsythe, Heather Q. Cronk, Curtis J. Seaman, Steven D. Miller, Emily Berndt, Harry G. Weinman, and Kennard B. Kasper
Atmos. Meas. Tech., 14, 1615–1634, https://doi.org/10.5194/amt-14-1615-2021, https://doi.org/10.5194/amt-14-1615-2021, 2021
Short summary
Short summary
This study uses geostationary imagery to detect dust. This research was done to demonstrate the ability of dust detection over ocean surfaces in a dry atmosphere.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskiy, Olivier Pujol, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 13, 6691–6701, https://doi.org/10.5194/amt-13-6691-2020, https://doi.org/10.5194/amt-13-6691-2020, 2020
Short summary
Short summary
To study the feasibility of a fluorescence lidar for aerosol characterization, the fluorescence channel is added to the multiwavelength Mie-Raman lidar of Lille University. A part of the fluorescence spectrum is selected by the interference filter of 44 nm bandwidth centered at 466 nm. Such an approach has demonstrated high sensitivity, allowing fluorescence signals from weak aerosol layers to be detected. The technique can also be used for monitoring the aerosol inside the cloud layers.
Katta Vijayakumar, Panuganti C. S. Devara, Sunil M. Sonbawne, David M. Giles, Brent N. Holben, Sarangam Vijaya Bhaskara Rao, and Chalicheemalapalli K. Jayasankar
Atmos. Meas. Tech., 13, 5569–5593, https://doi.org/10.5194/amt-13-5569-2020, https://doi.org/10.5194/amt-13-5569-2020, 2020
Short summary
Short summary
The direct-Sun and inversion products of urban atmospheric aerosols, obtained from a Cimel Sun–sky radiometer in Pune, India, under the AERONET program since October 2004, have been reported in this paper. The mean seasonal variations in AOD from cloud-free days indicated greater values during the monsoon season, revealing dominance of hygroscopic aerosols over the station. Such results are sparse in India and are important for estimating aerosol radiative forcing and validating climate models.
Teruyuki Nakajima, Monica Campanelli, Huizheng Che, Victor Estellés, Hitoshi Irie, Sang-Woo Kim, Jhoon Kim, Dong Liu, Tomoaki Nishizawa, Govindan Pandithurai, Vijay Kumar Soni, Boossarasiri Thana, Nas-Urt Tugjsurn, Kazuma Aoki, Sujung Go, Makiko Hashimoto, Akiko Higurashi, Stelios Kazadzis, Pradeep Khatri, Natalia Kouremeti, Rei Kudo, Franco Marenco, Masahiro Momoi, Shantikumar S. Ningombam, Claire L. Ryder, Akihiro Uchiyama, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 4195–4218, https://doi.org/10.5194/amt-13-4195-2020, https://doi.org/10.5194/amt-13-4195-2020, 2020
Short summary
Short summary
This paper overviews the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. The paper also discusses current issues of SKYNET to provide better information for the community.
Hans Grob, Claudia Emde, Matthias Wiegner, Meinhard Seefeldner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 13, 239–258, https://doi.org/10.5194/amt-13-239-2020, https://doi.org/10.5194/amt-13-239-2020, 2020
Short summary
Short summary
Polarimetry has been established as an enhancement to classical photometry in aerosol remote sensing over the past years. We propose a fast and exact radiometric and polarimetric calibration method for polarized photometers. Additionally, a technique for correcting an alt-azimuthal mount is introduced.
These methods are applied to measurements obtained with our SSARA instrument during the A-LIFE field campaign. For 2 d, the data are subjected to an inversion of aerosol optical properties.
Akihiro Uchiyama, Masataka Shiobara, Hiroshi Kobayashi, Tsuneo Matsunaga, Akihiro Yamazaki, Kazunori Inei, Kazuhiro Kawai, and Yoshiaki Watanabe
Atmos. Meas. Tech., 12, 6465–6488, https://doi.org/10.5194/amt-12-6465-2019, https://doi.org/10.5194/amt-12-6465-2019, 2019
Short summary
Short summary
The majority of aerosol data are obtained from daytime measurements using the Sun as a light source, and there are few datasets available for studying nighttime aerosol characteristics. To estimate the aerosol optical depth (AOD) during the nighttime using the moon as a light source, a radiometer for the daytime was modified, and a new calibration method was developed. As a result, the estimations of the nighttime AOD were made with the same degree of precision and accuracy during the daytime.
Chong Wang, Mingjiao Jia, Haiyun Xia, Yunbin Wu, Tianwen Wei, Xiang Shang, Chengyun Yang, Xianghui Xue, and Xiankang Dou
Atmos. Meas. Tech., 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019, https://doi.org/10.5194/amt-12-3303-2019, 2019
Short summary
Short summary
To investigate the relationship between BLH and air pollution under different conditions, a compact micro-pulse lidar integrating both direct-detection lidar and coherent Doppler wind lidar is built. Evolution of atmospheric boundary layer height (BLH), aerosol layer and fine structure in cloud base are well retrieved. Negative correlation exists between BLH and PM2.5. Different trends show that the relationship between PM2.5 and BLH should be considered in different boundary layer categories.
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019, https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
Short summary
The future Flexible Combined Imager (FCI) on board MeteoSat Third Generation is expected to improve the detection and the quantification of aerosols. The study assesses the potential of FCI/VIS04 channel for monitoring air pollution in Europe. An observing system simulation experiment in MOCAGE is developed, and they show a large positive impact of the assimilation over a 4-month period and particularly during a severe pollution episode. The added value of geostationary data is also assessed.
Charles J. Vernon, Ryan Bolt, Timothy Canty, and Ralph A. Kahn
Atmos. Meas. Tech., 11, 6289–6307, https://doi.org/10.5194/amt-11-6289-2018, https://doi.org/10.5194/amt-11-6289-2018, 2018
Short summary
Short summary
The height that aerosols are injected into the atmosphere can significantly impact the dispersion of aerosol plumes. We use direct observations from the MISR instrument to determine aerosol injection height and constrain the HYSPLIT Dispersion model with these data. We have shown that the nominal plume-rise calculation within HYSPLIT tends to underestimate injection heights of wildfires and that simulations constrained with MISR injection height can show better agreement with MODIS observations.
Akihiro Uchiyama, Tsuneo Matsunaga, and Akihiro Yamazaki
Atmos. Meas. Tech., 11, 5363–5388, https://doi.org/10.5194/amt-11-5363-2018, https://doi.org/10.5194/amt-11-5363-2018, 2018
Short summary
Short summary
Atmospheric aerosols are an important constituent of the atmosphere. Measurement networks using radiometers such as SKYNET have been developed. There are two constants that we must determine to make accurate measurements. One of them is the calibration constant. The accuracy of the current method to determine this was investigated and the new method for water vapor and near-infrared channels was developed. Utilizing the results of this paper, SKYNET measurement data will become more reliable.
Akihiro Uchiyama, Tsuneo Matsunaga, and Akihiro Yamazaki
Atmos. Meas. Tech., 11, 5389–5402, https://doi.org/10.5194/amt-11-5389-2018, https://doi.org/10.5194/amt-11-5389-2018, 2018
Short summary
Short summary
Atmospheric aerosols are an important constituent of the atmosphere. Measurement networks using radiometers such as SKYNET have been developed. There are two constants that we must determine. One of them is the solid view angle (SVA) of the radiometer. The problems related to SVA were investigated. It was shown that the conventional method can cause a systematic underestimation, and an improved method was proposed. Utilizing the results of this paper, SKYNET data will become more reliable.
Ioana Elisabeta Popovici, Philippe Goloub, Thierry Podvin, Luc Blarel, Rodrigue Loisil, Florin Unga, Augustin Mortier, Christine Deroo, Stéphane Victori, Fabrice Ducos, Benjamin Torres, Cyril Delegove, Marie Choël, Nathalie Pujol-Söhne, and Christophe Pietras
Atmos. Meas. Tech., 11, 4671–4691, https://doi.org/10.5194/amt-11-4671-2018, https://doi.org/10.5194/amt-11-4671-2018, 2018
Short summary
Short summary
This paper aims to show the potential of an instrumented mobile platform, performing on-road remote sensing and in situ measurements, to derive aerosol properties. It is distinguished from other transportable platforms through its ability to perform measurements during movement. Its reduced size, versatility and great flexibility makes it suitable for following sudden aerosol events and for validating satellite measurements and model simulations.
Kirk Knobelspiesse and Sreeja Nag
Atmos. Meas. Tech., 11, 3935–3954, https://doi.org/10.5194/amt-11-3935-2018, https://doi.org/10.5194/amt-11-3935-2018, 2018
Short summary
Short summary
We test if small satellites flying in formation can be used for multi-angle aerosol remote sensing. So far, this has only been done with multiple views on one satellite. Single-view angle satellites flying in formation are a technically feasible alternative, although with different geometries. Using Bayesian information content analysis, we find such satellites equally capable. For aerosol remote sensing, the number of viewing angles is the most important.
Landon A. Rieger, Elizaveta P. Malinina, Alexei V. Rozanov, John P. Burrows, Adam E. Bourassa, and Doug A. Degenstein
Atmos. Meas. Tech., 11, 3433–3445, https://doi.org/10.5194/amt-11-3433-2018, https://doi.org/10.5194/amt-11-3433-2018, 2018
Short summary
Short summary
This paper compares aerosol extinction records from two limb scattering instruments, OSIRIS and SCIAMACHY, to that from the occultation instrument SAGE II. Differences are investigated through modelling and retrieval studies and important sources of systematic errors are quantified. It is found that the largest biases come from uncertainties in the aerosol size distribution and the aerosol particle concentration at altitudes above 30 km.
Evgenia Galytska, Vassyl Danylevsky, René Hommel, and John P. Burrows
Atmos. Meas. Tech., 11, 2101–2118, https://doi.org/10.5194/amt-11-2101-2018, https://doi.org/10.5194/amt-11-2101-2018, 2018
Short summary
Short summary
This research assesses the influence of biomass burning during forest fires throughout summer 2010 on aerosol load over Ukraine, the European territory of Russia (ETR) and Eastern Europe. We apply and compare ground-based and satellite measurements to determine aerosol content, dynamics, and properties. With the application of modeling techniques (HYSPLIT), we show that the maximum AOD in August 2010 over Ukraine was caused by particle transport from the forest fires in the ETR.
Livio Belegante, Juan Antonio Bravo-Aranda, Volker Freudenthaler, Doina Nicolae, Anca Nemuc, Dragos Ene, Lucas Alados-Arboledas, Aldo Amodeo, Gelsomina Pappalardo, Giuseppe D'Amico, Francesco Amato, Ronny Engelmann, Holger Baars, Ulla Wandinger, Alexandros Papayannis, Panos Kokkalis, and Sérgio N. Pereira
Atmos. Meas. Tech., 11, 1119–1141, https://doi.org/10.5194/amt-11-1119-2018, https://doi.org/10.5194/amt-11-1119-2018, 2018
Short summary
Short summary
This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected EARLINET lidar instruments. The calibrated volume and particle depolarization profiles at 532 nm show values that fall within a range that is accepted in the literature. The depolarization accuracy estimate at 532 nm is better than ±0.03 for all cases.
Igor V. Geogdzhayev and Alexander Marshak
Atmos. Meas. Tech., 11, 359–368, https://doi.org/10.5194/amt-11-359-2018, https://doi.org/10.5194/amt-11-359-2018, 2018
Short summary
Short summary
The unique Earth view of the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) orbiting at the point of equal attraction from the Earth and the Sun can significantly augment the low-orbit remote sensing of aerosols, clouds and gases. We derive the relationship between the digital counts and the reflected sunlight intensity for some EPIC channels using collocated Earth views from EPIC and Moderate Resolution Imaging Spectroradiometer (MODIS) and EPIC moon views.
Panagiotis Kokkalis
Atmos. Meas. Tech., 10, 3103–3115, https://doi.org/10.5194/amt-10-3103-2017, https://doi.org/10.5194/amt-10-3103-2017, 2017
Short summary
Short summary
The mathematical formulation for the optical setup of a typical EARLINET lidar system is given here. The equations describing a lidar system from the emitted laser beam to the projection of the telescope aperture on the final receiving unit (i.e., photomultiplier or photodiode) are presented, based on paraxial approximation and a geometric optics approach. The evaluation of the formulation is performed with ray-tracing simulations on a real system.
Andrew M. Sayer, N. Christina Hsu, Corey Bettenhausen, Robert E. Holz, Jaehwa Lee, Greg Quinn, and Paolo Veglio
Atmos. Meas. Tech., 10, 1425–1444, https://doi.org/10.5194/amt-10-1425-2017, https://doi.org/10.5194/amt-10-1425-2017, 2017
Short summary
Short summary
The satellite instrument VIIRS is being used to carry on observations of the Earth made by older satellites like MODIS. Data sets created from these satellite observations depend on the quality of the satellite instruments' calibration. This paper describes a comparison between the calibration of these two sensors. MODIS is believed to be more reliable and so VIIRS is corrected to bring it in line with MODIS. These corrections are shown to improve the quality of VIIRS aerosol data.
Thomas Carlund, Natalia Kouremeti, Stelios Kazadzis, and Julian Gröbner
Atmos. Meas. Tech., 10, 905–923, https://doi.org/10.5194/amt-10-905-2017, https://doi.org/10.5194/amt-10-905-2017, 2017
Short summary
Short summary
Aerosols play an important role in atmospheric processes. Aerosol optical depth is the most common measure of columnar aerosol load. We present a sunphotometer called UVPFR that is able to measure aerosol optical depth in the ultraviolet range, including the calibration, characterization and validation of the instrument/measurements. The instrument will serve as a reference on the intercalibration of Brewer spectrophotometers that are also able to measure aerosol optical depth in the UV region.
A. Fernando Almansa, Emilio Cuevas, Benjamín Torres, África Barreto, Rosa D. García, Victoria E. Cachorro, Ángel M. de Frutos, César López, and Ramón Ramos
Atmos. Meas. Tech., 10, 565–579, https://doi.org/10.5194/amt-10-565-2017, https://doi.org/10.5194/amt-10-565-2017, 2017
Short summary
Short summary
This study presents a new zenith-looking narrow-band radiometer-based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring. The ZEN system comprises a robust and automated radiometer (ZEN-R41), and a lookup table methodology for AOD retrieval (ZEN-LUT). Our results suggest that ZEN is a suitable system to fill the current observational gaps and to complement observations performed by sun-photometer networks in order to improve mineral dust monitoring in remote locations.
Stelios Kazadzis, Panagiotis Raptis, Natalia Kouremeti, Vassilis Amiridis, Antti Arola, Evangelos Gerasopoulos, and Gregory L. Schuster
Atmos. Meas. Tech., 9, 5997–6011, https://doi.org/10.5194/amt-9-5997-2016, https://doi.org/10.5194/amt-9-5997-2016, 2016
Short summary
Short summary
Aerosols play an important role in the Earth's climate. One of the main aerosol properties is the single scattering albedo which is a measure of the aerosol absorption. In this work we have presented a method to retrieve this aerosol property in the ultraviolet and we presented the results for measurements at the urban environment of Athens, Greece. We show that the spectral dependence of the aerosol absorption in the VIS–IR and the UV range depends on the aerosol composition and type.
Moritz Haarig, Ronny Engelmann, Albert Ansmann, Igor Veselovskii, David N. Whiteman, and Dietrich Althausen
Atmos. Meas. Tech., 9, 4269–4278, https://doi.org/10.5194/amt-9-4269-2016, https://doi.org/10.5194/amt-9-4269-2016, 2016
Volker Freudenthaler
Atmos. Meas. Tech., 9, 4181–4255, https://doi.org/10.5194/amt-9-4181-2016, https://doi.org/10.5194/amt-9-4181-2016, 2016
Simone Kotthaus, Ewan O'Connor, Christoph Münkel, Cristina Charlton-Perez, Martial Haeffelin, Andrew M. Gabey, and C. Sue B. Grimmond
Atmos. Meas. Tech., 9, 3769–3791, https://doi.org/10.5194/amt-9-3769-2016, https://doi.org/10.5194/amt-9-3769-2016, 2016
Short summary
Short summary
Ceilometers lidars are useful to study clouds, aerosol layers and atmospheric boundary layer structures. As sensor optics and acquisition algorithms can strongly influence the observations, sensor specifics need to be incorporated into the physical interpretation. Here, recommendations are made for the operation and processing of profile observations from the widely deployed Vaisala CL31 ceilometer. Proposed corrections are shown to increase data quality and even data availability at times.
Maxime Hervo, Yann Poltera, and Alexander Haefele
Atmos. Meas. Tech., 9, 2947–2959, https://doi.org/10.5194/amt-9-2947-2016, https://doi.org/10.5194/amt-9-2947-2016, 2016
Short summary
Short summary
Imperfections in a lidar's overlap function lead to artefacts in the lidar (Light Detection and Ranging) signals. These artefacts can erroneously be interpreted as an aerosol gradient or, in extreme cases, as a cloud base leading to false cloud detection. In this study an algorithm is presented to correct such artefacts.
The algorithm is completely automatic and does not require any intervention on site. It is therefore suited for use in large automatic lidar networks.
Aaron R. Naeger, Pawan Gupta, Bradley T. Zavodsky, and Kevin M. McGrath
Atmos. Meas. Tech., 9, 2463–2482, https://doi.org/10.5194/amt-9-2463-2016, https://doi.org/10.5194/amt-9-2463-2016, 2016
Short summary
Short summary
In this study, we merge aerosol information from multiple satellite sensors on board low-earth orbiting (LEO) and geostationary (GEO) platforms in order to provide a more comprehensive understanding of the spatial distribution of aerosols compared to when only using single sensors as is commonly done. Our results show that merging aerosol information from LEO and GEO platforms can be very useful, which paves the way for applications to the more advanced next-generation of satellites.
Ronny Engelmann, Thomas Kanitz, Holger Baars, Birgit Heese, Dietrich Althausen, Annett Skupin, Ulla Wandinger, Mika Komppula, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Ina Mattis, Holger Linné, and Albert Ansmann
Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, https://doi.org/10.5194/amt-9-1767-2016, 2016
Short summary
Short summary
The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly
was developed at TROPOS in 2003. This lidar type was continuously improved with gained experience from EARLINET, worldwide field campaigns, and institute collaborations within the last 10 years. We present recent changes to the setup of our portable multiwavelength Raman and polarization lidar PollyXT.
Zongming Tao, Zhenzhu Wang, Shijun Yang, Huihui Shan, Xiaomin Ma, Hui Zhang, Sugui Zhao, Dong Liu, Chenbo Xie, and Yingjian Wang
Atmos. Meas. Tech., 9, 1369–1376, https://doi.org/10.5194/amt-9-1369-2016, https://doi.org/10.5194/amt-9-1369-2016, 2016
Short summary
Short summary
A new measurement technology of PM2.5 mass concentration profile near ground is addressed using a CCD side-scatter lidar and a PM2.5 detector.
The PM2.5 mass concentration profile can be built upon the vertical distribution of the extinction coefficient for aerosol. The PM2.5 is always loading in the planet boundary layer with a complex muti-layer structure. The new method for PM2.5 mass concentration profile is useful for improving our understanding of air quality and atmospheric environment.
B. J. Elash, A. E. Bourassa, P. R. Loewen, N. D. Lloyd, and D. A. Degenstein
Atmos. Meas. Tech., 9, 1261–1277, https://doi.org/10.5194/amt-9-1261-2016, https://doi.org/10.5194/amt-9-1261-2016, 2016
Cited articles
Althausen, D., Müller, D., Ansmann, A., Wandinger, U., Hube, H., Clauder, E., and Zörner, S.: Scanning sixwavelength eleven channel aerosol lidar, J. Atmos. Ocean. Tech., 17, 1469–1482, 2000.
Alvarez, J. M., Vaughan, M. A., Hostetler, C. A., Hunt, W. H., and Winker, D. M.: Calibration Technique for polarization-sensitive lidars, J. Atmos. Ocean. Tech., 23, 683–699, 2006.
Bairashin, G. S., Balin, Yu. S., Ershov, A. D., Kokhanenko, G. P., and Penner, I. E.: Lidar LOZA-MS for investigation of aerosol fields in troposphere, Opt. Eng., 44, 071209-1–071209-7, 2005.
Bairashin, G. S., Balin, Yu. S., Klemasheva, M. G., Kokhanenko, G. P., Penner, I. E., and Samoilova, S. V.: Aerosol-Raman lidar LOSA-M2,
Quantum Electron+, 41, 945–949, 2011.
Balin, Yu., Kaul, B., Kokhanenko, G., and Winker, D.: Application of circularly polarized laser radiation for sensing of crystal clouds, Opt. Express, 17, 6849–6859, 2009.
Balin, Yu. S., Kaul, B. V., Kokhanenko, G. P., and Penner, I. E.: Observations of specular reflective particles and layers in crystal
clouds, Opt. Express, 19, 6209–6214, 2011.
Belegante, L., Bravo-Aranda, J. A., Freudenthaler, V., Nicolae, D., Nemuc, A., Ene, D., Alados-Arboledas, L., Amodeo, A., Pappalardo, G., D'Amico, G., Amato, F., Engelmann, R., Baars, H., Wandinger, U., Papayannis, A., Kokkalis, P., and Pereira, S. N.: Experimental techniques for the calibration of lidar depolarization channels in EARLINET, Atmos. Meas. Tech., 11, 1119–1141, https://doi.org/10.5194/amt-11-1119-2018, 2018.
Biele, J., Beyerle, G., and Baumgarten, G.: Polarization lidar: Corrections of instrumental effects, Opt. Express, 7, 427–435, 2000.
Borovoi, A., Grishin, I., Naats, E., and Oppel, U.: Backscattering peak of hexagonal ice columns and plates, Opt. Lett., 25, 1388–1390, 2000.
Borovoi, A., Galileiskii, V., Morozov, A., and Cohen, A.: Detection of ice crystal particles preferably oriented in the atmosphere by use of the specular component of scattered light, Opt. Express, 16, 7625–7633, 2008.
Borovoi, A., Balin, Yu., Kokhanenko, G., Penner, I.; Konoshonkin, A., and Kustova, N.: Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar, Opt. Express, 22, 24566–24573, 2014.
Bravo-Aranda, J. A., Belegante, L., Freudenthaler, V., Alados-Arboledas, L., Nicolae, D., Granados-Muñoz, M. J., Guerrero-Rascado, J. L., Amodeo, A., D'Amico, G., Engelmann, R., Pappalardo, G., Kokkalis, P., Mamouri, R., Papayannis, A., Navas-Guzmán, F., Olmo, F. J., Wandinger, U., Amato, F., and Haeffelin, M.: Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator, Atmos. Meas. Tech., 9, 4935–4953, https://doi.org/10.5194/amt-9-4935-2016, 2016.
Breon, F.-M. and Dubrulle, B.: Horizontally oriented plates in clouds, J. Atmos. Sci., 61, 2888–2898, 2004.
Burton, S. P., Hair, J. W., Kahnert, M., Ferrare, R. A., Hostetler, C. A., Cook, A. L., Harper, D. B., Berkoff, T. A., Seaman, S. T., Collins, J. E., Fenn, M. A., and Rogers, R. R.: Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 15, 13453–13473, https://doi.org/10.5194/acp-15-13453-2015, 2015.
Campbell, J. R., Vaughan, M. A., Oo, M., Holz, R. E., Lewis, J. R., and Welton, E. J.: Distinguishing cirrus cloud presence in autonomous lidar measurements, Atmos. Meas. Tech., 8, 435–449, https://doi.org/10.5194/amt-8-435-2015, 2015.
Chen, W. N., Chiang, C. W., and Nee, J. B.: Lidar ratio and depolarization ratio for cirrus clouds, Appl. Optics., 41, 6470–6476, 2002.
Chepfer, H., Brogniez, G., Goloub, P., Breon, F. M., and Flamant, P. H.: Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1, J. Quant. Spectrosc. Ra., 63, 521–543, 1999.
Cho, H. M., Yang, P., Kattawar, G. W., Nasiri, S. L., Hu, Y., Minnis, P., Trepte, C., and Winker, D.: Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements, Opt. Express, 16, 3931–3948, 2008.
Del Guasta, M., Vallar, E., Riviere, O., Castagnoli, F., Venturi, V., and Morandi, M.: Use of polarimetric lidar for the study of oriented ice plates in clouds, Appl. Optics., 45, 4878–4887, 2006.
Di, H. G., Hua, H. B., Cui, Y., Hua, D. X., Li, B., and Song, Y. H.: Correction technology of a polarization lidar with a complex optical system, J. Opt. Soc. Am. A, 33, 1488–1494, 2016.
Eloranta, E.: High Spectral Resolution Lidar, in: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, edited by: Weitkamp, C., Springer, New York, 2005.
Eloranta, E. W. and Piironen, P.: Depolarization measurements with the high spectral resolution lidar, Abstracts 17th Int. Laser Radar Conf., Sendai, Japan, 127–128, 1994.
Engelmann, R., Kanitz, T., Baars, H., Heese, B., Althausen, D., Skupin, A., Wandinger, U., Komppula, M., Stachlewska, I. S., Amiridis, V., Marinou, E., Mattis, I., Linné, H., and Ansmann, A.: The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation, Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, 2016.
Freudenthaler, V.: About the effects of polarising optics on lidar signals and the Δ90 calibration, Atmos. Meas. Tech., 9, 4181–4255, https://doi.org/10.5194/amt-9-4181-2016, 2016.
Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., Müller, D., Althausen, D., Wirth, M., Fix, A., Ehret, G., Knippertz, P., Toledano, C., Gasteiger, J., Garhammer, M., and Seefeldner, M.: Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B, 61, 165–179, 2009.
Gimmestad, G. G.: Reexamination of depolarization in lidar measurements, Appl. Optics., 47, 3795–3802, 2008.
Groß, S., Freudenthaler, V., Schepanski, K., Toledano, C., Schäfler, A., Ansmann, A., and Weinzierl, B.: Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements, Atmos. Chem. Phys., 15, 11067–11080, https://doi.org/10.5194/acp-15-11067-2015, 2015.
Haarig, M., Engelmann, R., Ansmann, A., Veselovskii, I., Whiteman, D. N., and Althausen, D.: 1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling: cirrus case study, Atmos. Meas. Tech., 9, 4269–4278, https://doi.org/10.5194/amt-9-4269-2016, 2016.
Haarig, M., Ansmann, A., Althausen, D., Klepel, A., Groß, S., Freudenthaler, V., Toledano, C., Mamouri, R.-E., Farrell, D. A., Prescod, D. A., Marinou, E., Burton, S. P., Gasteiger, J., Engelmann, R., and Baars, H.: Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014, Atmos. Chem. Phys., 17, 10767–10794, https://doi.org/10.5194/acp-17-10767-2017, 2017.
Hayman, M., Spuler, S., Morley, B., and VanAndel, J.: Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers, Opt. Express, 20, 29553–29567, 2012.
Hayman, M., Spuler, S., and Morley, B.: Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain, Opt. Express, 22, 16976–16990, 2014.
Hoareau, C., Keckhut, P., Noel, V., Chepfer, H., and Baray, J.-L.: A decadal cirrus clouds climatology from ground-based and spaceborne lidars above the south of France (43.9∘ N–5.7∘ E), Atmos. Chem. Phys., 13, 6951–6963, https://doi.org/10.5194/acp-13-6951-2013, 2013.
Hu, Q., Goloub, P., Veselovskii, I., Bravo-Aranda, J.-A., Popovici, I. E., Podvin, T., Haeffelin, M., Lopatin, A., Dubovik, O., Pietras, C., Huang, X., Torres, B., and Chen, C.: Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France, Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, 2019.
Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L., and Weimer, C.: CALIPSO lidar description and performance assessment, J. Atmos. Ocean. Techn., 26, 1214–1228, 2009.
Kaul, B. V.: Symmetry of light backscattering matrices related to orientation of nonspherical aerosol particles, Atmospheric and Oceanic Optics, 13, 829–833, 2000.
Kaul, B. V. and Samokhvalov, I. V.: Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation, Atmospheric and Oceanic Optics, 18, 866–870, 2005.
Kaul, B. V., Samokhvalov, I. V., and Volkov, S. N.: Investigating of particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar, Appl. Optics., 43, 6620–6628, 2004.
Klotzsche, S. and Macke, A.: Influence of crystal tilt on solar irradiance of cirrus clouds, Appl. Optics., 45 1034–1040, 2006.
Kochanenko, G. P., Simonova, G. V., Makogon, M. M., Ponomarev, Yu. N., and Rynkov, O. A.: Designing a beam expander for dual-wave laser fluorescence lidar, J. Opt. Technol., 79, 217–219, 2012.
Kokhanenko, G. P., Balin, Yu. S., Borovoi, A. G., Klemasheva, M. G., Nasonov, S. V., Novoselov, M. M., Penner, I. E., and Samoilova, S. V.: Investigations of the crystalline particle orientation in high-level clouds with a scanning lidar, in: Proc. SPIE 10833, 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, 1083347, 13 December 2018, https://doi.org/10.1117/12.2504129, 2018.
Konoshonkin, A. V.: Simulation of the scanning lidar signals for a cloud of monodisperse quasi-horizontal oriented particle, Optika Atmosfery i Okeana, 29, 1053–1060, 2016 (in Russian).
Konoshonkin, A., Wang, Zh., Borovoi, A., Kustova, N., Liu, D., and Xie, Ch.: Backscatter by azimuthally oriented ice crystals of cirrus clouds, Opt. Express, 24, A1257–A1268, 2016.
Lavigne, C., Roblin, A., and Chervet, P.: Solar glint from oriented crystals in cirrus clouds, Appl. Optics., 47, 6266–6276, 2008.
Liou, K. N.: Influence of cirrus clouds on weather and climate processes: a global perspective, J. Geophys. Res., 103, 1799–1805, 1986.
Madonna, F., Rosoldi, M., Lolli, S., Amato, F., Vande Hey, J., Dhillon, R., Zheng, Y., Brettle, M., and Pappalardo, G.: Intercomparison of aerosol measurements performed with multi-wavelength Raman lidars, automatic lidars and ceilometers in the framework of INTERACT-II campaign, Atmos. Meas. Tech., 11, 2459–2475, https://doi.org/10.5194/amt-11-2459-2018, 2018.
Masuda, K. and Ishimoto, H.: Influence of particle orientation on retrieving cirrus cloud properties by use of total and polarized reflectances from satellite measurements, J. Quant. Spectrosc. Ra., 85, 183–193, 2004.
McCullough, E. M., Sica, R. J., Drummond, J. R., Nott, G., Perro, C., Thackray, C. P., Hopper, J., Doyle, J., Duck, T. J., and Walker, K. A.: Depolarization calibration and measurements using the CANDAC Rayleigh–Mie–Raman lidar at Eureka, Canada, Atmos. Meas. Tech., 10, 4253–4277, https://doi.org/10.5194/amt-10-4253-2017, 2017.
McCullough, E. M., Sica, R. J., Drummond, J. R., Nott, G. J., Perro, C., and Duck, T. J.: Three-channel single-wavelength lidar depolarization calibration, Atmos. Meas. Tech., 11, 861–879, https://doi.org/10.5194/amt-11-861-2018, 2018.
McGill, M. J., Hlavka, D. L., Hart, W. D., Spinhirne, J. D., Scott, V. S., and Schmid, B.: The Cloud Physics Lidar: Instrument description and initial measurement results, Appl. Optics., 41, 3725–3734, 2002.
Mishchenko, M. I. and Hovenier, J. W.: Depolarization of light backscattered by randomly oriented nonspherical particles, Opt. Lett., 20, 1356–1358, 1995.
Neely, R. R., Hayman, M., Stillwell, R. A., Thayer, J. P., Hardesty, R. M., O'Neill, M., Shupe, M. D., and Alvarez, C.: Polarization Lidar at Summit, Greenland for the Detection of Cloud Phase and Particle Orientation, J. Atmos. Ocean. Tech., 30, 1635–1655, 2013.
Noel, V. and Chepfer, H.: A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), J. Geophys. Res., 115, D00H23, https://doi.org/10.1029/2009JD012365, 2010.
Noel, V. and Sassen, K.: Study of ice crystal orientation in ice clouds from scanning polarization lidar observations, J. Appl. Meteorol., 44, 653–664, 2005.
Noel, V., Chepfer, H., Ledanois, G., Delaval, A., and Flamant, P. H.: Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio, Appl. Optics., 41, 4245–4257, 2002.
Nott, G., Duck, T., Doyle, J., Coffin, M., Perro, C., Thackray, C., Drummond, J., Fogal, P., McCullough, E., and Sica, R.: A remotely operated lidar for aerosol, temperature, and water vapor profiling in the High Arctic, J. Atmos. Ocean. Tech., 29, 221–234, 2012.
Pal, S. R. and Carswell, A. I.: Polarization properties of lidar scattering from clouds at 347 nm and 694 nm, Appl. Optics., 17, 2321–2328, 1978.
Platt, C. M. R.: Lidar observations of a mixed-phase altostratus cloud, J. Appl. Meteorol., 16, 339–345, 1977.
Platt, C. M. R.: Lidar backscatter from horizontal ice crystal plates, J. Appl. Meteorol., 17, 482–488, 1978.
Platt, C. M. R., Abshire, N. L., and McNice, G. T.: Some Microphysical Properties of an Ice Cloud from Lidar Observation of Horizontally Oriented Crystals, J. Appl. Meteorol., 17, 1220–1224, 1978.
Reichardt, J., Wandinger, U., Klein, V., Mattis, I., Hilber, B., and Begbie, R.: RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements, Appl. Optics., 51, 8111–8131, 2012.
Samokhvalov, I. V., Nasonov, S. V., Stykon, A. P., Bryukhanov, I. D., Borovoi, A. G., Volkov, S. N., Kustova, N. V., and Konoshonkin, A. V.: Investigation of phase matrices of cirrus containing ensembles of oriented ice particles, in: Proc. SPIE 9292, 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Novosibirsk, 92922M, 25 November 2014, https://doi.org/10.1117/12.2075562, 2014.
Sassen, K.: Ice crystal habit discrimination with the optical backscatter depolarization technique, J. Appl. Meteorol., 16, 425–431, 1977.
Sassen, K.: Corona-produsing cirrus cloud properties derived from polarization lidar and photographic analyses, Appl. Optics., 30, 3421–3428, 1991.
Sassen, K. and Benson, S.: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization, J. Atmos. Sci., 58, 2103–2112, 2001.
Sassen, K., Griffin, M. K., and Dodd, G. C.: Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications, J. Appl. Meteorol., 28, 91–98, 1989.
She, C.-Y.: Spectral structure of laser light scattering revisited: Bandwidths of nonresonant scattering lidars, Appl. Optics., 40, 4875–4884, 2001.
Simonova, G. V., Balin, Yu. S., Kokhanenko, G. P., Ponomarev, Yu. N., and Rynkov, O. A.: Scanning multi-wave lidar for atmosphere objects sensing, Invention patent of Russian Federation, No. 2593524, available at: https://patentdb.ru/patent/2593524 (last access: 20 February 2020), 2015 (in Russsian).
Spinhirne, J. D., Hansen, M. Z., and Caudill, L. O.: Cloud top remote sensing by airborne lidar, Appl. Optics., 21, 1564–1571, 1982.
Stillwell, R. A., Neely III, R. R., Thayer, J. P., Shupe, M. D., and Turner, D. D.: Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar, Atmos. Meas. Tech., 11, 835–859, https://doi.org/10.5194/amt-11-835-2018, 2018.
Strawbridge, K. B.: Developing a portable, autonomous aerosol backscatter lidar for network or remote operations, Atmos. Meas. Tech., 6, 801–816, https://doi.org/10.5194/amt-6-801-2013, 2013.
Summa, D., Di Girolamo, P., Stelitano, D., and Cacciani, M.: Characterization of the planetary boundary layer height and structure by Raman lidar: comparison of different approaches, Atmos. Meas. Tech., 6, 3515–3525, https://doi.org/10.5194/amt-6-3515-2013, 2013.
Tao, Z., McCormick, M. P., Wu, D., Liu, Z., and Vaughan, M. A.: Measurements of cirrus cloud backscatter color ratio with a two-wavelength lidar, Appl. Optics., 47, 1478–1485, 2008.
Thomas, L., Cartwright, J. C., and Wareing, D. P.: Lidar observation of the horizontal orientation of ice crystals in cirrus clouds, Tellus B, 42, 211–216, 1990.
Vaughan, M. A., Liu, Z., McGill, M. J., Hu, Y., and Obland, M. D.: On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP's 1064 nm calibration assumptions using cloud physics lidar measurements, J. Geophys. Res., 115, D14206, https://doi.org/10.1029/2009JD013086, 2010.
Veselovskii, I., Goloub, P., Podvin, T., Tanre, D., Ansmann, A., Korenskiy, M., Borovoi, A., Hu, Q., and Whiteman, D. N.: Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection, J. Quant. Spectrosc. Ra., 202, 74–80, 2017.
Volkov, S. N., Kaul, B. V., and Samokhvalov, I. V.: A technique for processing of lidar measurements of backscattering matrices, Atmospheric and Oceanic Optics, 15, 891–895, 2002.
Whiteman, D. N., Veselovskii, I., Cadirola, M., Rush, K., Comer, J., Potter, J., and Tola, R.: Demonstration Measurements of Water Vapor, Cirrus Clouds, and Carbon Dioxide Using a High-Performance Raman Lidar, J. Atmos. Ocean. Tech., 24, 1377–1388, 2007.
Yoshida, R., Okamoto, H., Hagihara, Y., and Ishimoto, H.: Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio, J. Geophys. Res., 115,
D00H32, https://doi.org/10.1029/2009JD012334, 2010.
You, Y., Kattawar, G. W., Yang, P., Hu, Y. X., and Baum, B. A.: Sensitivity of depolarized lidar signals to cloud and aerosol particle properties, J. Quant. Spectrosc. Ra., 100, 470–482, 2006.
Young, A. T.: Revised depolarization corrections for atmospheric extinction, Appl. Optics., 19, 3427–3428, 1980.
Short summary
Cirrus clouds consist of crystals (plates, needles) that can orient themselves in space as a result of free fall. This leads to the appearance of various types of optical halo and to specular reflection of solar radiation. The presence of such particles significantly affects the passage of thermal radiation through the mid- and high-level ice clouds. Using the properties of polarization, a scanning lidar makes it possible to identify cloud areas with oriented crystals.
Cirrus clouds consist of crystals (plates, needles) that can orient themselves in space as a...