Articles | Volume 13, issue 3
Atmos. Meas. Tech., 13, 1485–1499, 2020
https://doi.org/10.5194/amt-13-1485-2020
Atmos. Meas. Tech., 13, 1485–1499, 2020
https://doi.org/10.5194/amt-13-1485-2020
Research article
31 Mar 2020
Research article | 31 Mar 2020

Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds

Maria P. Cadeddu et al.

Related authors

Experimental total uncertainty of the derived GNSS-integrated water vapour using four co-located techniques in Finland
Ermanno Fionda, Maria Cadeddu, Vinia Mattioli, and Rosa Pacione
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-161,https://doi.org/10.5194/amt-2018-161, 2018
Publication in AMT not foreseen
Short summary
A microwave satellite water vapour column retrieval for polar winter conditions
Christopher Perro, Glen Lesins, Thomas J. Duck, and Maria Cadeddu
Atmos. Meas. Tech., 9, 2241–2252, https://doi.org/10.5194/amt-9-2241-2016,https://doi.org/10.5194/amt-9-2241-2016, 2016
Short summary
Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia
Y. Feng, V. R. Kotamarthi, R. Coulter, C. Zhao, and M. Cadeddu
Atmos. Chem. Phys., 16, 247–264, https://doi.org/10.5194/acp-16-247-2016,https://doi.org/10.5194/acp-16-247-2016, 2016
Short summary
Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances
M. D. Fielding, J. C. Chiu, R. J. Hogan, G. Feingold, E. Eloranta, E. J. O'Connor, and M. P. Cadeddu
Atmos. Meas. Tech., 8, 2663–2683, https://doi.org/10.5194/amt-8-2663-2015,https://doi.org/10.5194/amt-8-2663-2015, 2015
Quantifying the value of redundant measurements at GCOS Reference Upper-Air Network sites
F. Madonna, M. Rosoldi, J. Güldner, A. Haefele, R. Kivi, M. P. Cadeddu, D. Sisterson, and G. Pappalardo
Atmos. Meas. Tech., 7, 3813–3823, https://doi.org/10.5194/amt-7-3813-2014,https://doi.org/10.5194/amt-7-3813-2014, 2014
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving discrimination between clouds and optically thick aerosol plumes in geostationary satellite data
Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud
Atmos. Meas. Tech., 15, 3031–3051, https://doi.org/10.5194/amt-15-3031-2022,https://doi.org/10.5194/amt-15-3031-2022, 2022
Short summary
Towards the use of conservative thermodynamic variables in data assimilation: a case study using ground-based microwave radiometer measurements
Pascal Marquet, Pauline Martinet, Jean-François Mahfouf, Alina Lavinia Barbu, and Benjamin Ménétrier
Atmos. Meas. Tech., 15, 2021–2035, https://doi.org/10.5194/amt-15-2021-2022,https://doi.org/10.5194/amt-15-2021-2022, 2022
Short summary
Empirical model of multiple-scattering effect on single-wavelength lidar data of aerosols and clouds
Valery Shcherbakov, Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 15, 1729–1754, https://doi.org/10.5194/amt-15-1729-2022,https://doi.org/10.5194/amt-15-1729-2022, 2022
Short summary
Analytic characterization of random errors in spectral dual-polarized cloud radar observations
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354, https://doi.org/10.5194/amt-15-1333-2022,https://doi.org/10.5194/amt-15-1333-2022, 2022
Short summary
Assessing synergistic radar and radiometer capability in retrieving ice cloud microphysics based on hybrid Bayesian algorithms
Yuli Liu and Gerald G. Mace
Atmos. Meas. Tech., 15, 927–944, https://doi.org/10.5194/amt-15-927-2022,https://doi.org/10.5194/amt-15-927-2022, 2022
Short summary

Cited articles

Acquistapace, C., Loöhnert, U., Maahn, M., and Kollias, P.: A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing, J. Atmos. Ocean. Tech., 36, 781–801, https://doi.org/10.1175/JTECH-D-18-0158.1, 2019. 
Ahlgrimm, M. and Forbes, R.: Improving the Representation of Low Clouds and Drizzle in the ECMWF Model Based on ARM Observations from the Azores, Mon. Weather Rev., 142, 668–685, https://doi.org/10.1175/MWR-D-13-00153.1, 2014. 
Bosisio A., V., Fionda, E., Ciotti, P., and Martellucci, P.: A sky status indicator to detect rain-affected atmospheric thermal emissions observed at ground, IEEE Trans. Geosci. Remote Sens., 51, 9, 4643–4649, 2013. 
Cadeddu, M. P., Turner, D. D., and Liljegren, J. C.: A neural network for real-time retrievals of PWV and LWP from arctic millimeter-wave ground-based observations, IEEE Trans. Geosci. Remote Sens., 47, 7, 1887–1900, 2009. 
Cadeddu, M. P., Marchand, R., Orlandi, E., Turner, D. D., and Mech, M.: Microwave Passive Ground-Based Retrievals of Cloud and Rain Liquid Water Path in Drizzling Clouds: Challenges and Possibilities, IEEE Trans. Geosci. Remote. Sens., 55, 11, 6468–6481, 2017. 
Download
Short summary
A combination of ground-based active and passive observations is used to partition cloud and precipitation liquid water path in precipitating stratocumulous clouds. Results show that neglecting scattering effects from drizzle drops leads to 8–15 % overestimation of the liquid amount in the cloud. In closed-cell systems only ~20 % of the available drizzle in the cloud falls below the cloud base, compared to ~40 % in open-cell systems.