Articles | Volume 13, issue 3
https://doi.org/10.5194/amt-13-1485-2020
https://doi.org/10.5194/amt-13-1485-2020
Research article
 | 
31 Mar 2020
Research article |  | 31 Mar 2020

Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds

Maria P. Cadeddu, Virendra P. Ghate, and Mario Mech

Related authors

Propagating information content: an example with advection
David D. Turner, Maria P. Cadeddu, Julia M. Simonson, and Timothy J. Wagner
Atmos. Meas. Tech., 18, 3533–3546, https://doi.org/10.5194/amt-18-3533-2025,https://doi.org/10.5194/amt-18-3533-2025, 2025
Short summary
Surface Radiation Trends at North Slope of Alaska Influenced by Large-Scale Circulation and Atmospheric Rivers
Dan Lubin, Xun Zou, Johannes Mülmenstädt, Andrew Vogelmann, Maria Cadeddu, and Damao Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2768,https://doi.org/10.5194/egusphere-2025-2768, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Boundary layer moisture variability at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory during marine conditions
Maria P. Cadeddu, Virendra P. Ghate, David D. Turner, and Thomas E. Surleta
Atmos. Chem. Phys., 23, 3453–3470, https://doi.org/10.5194/acp-23-3453-2023,https://doi.org/10.5194/acp-23-3453-2023, 2023
Short summary
Experimental total uncertainty of the derived GNSS-integrated water vapour using four co-located techniques in Finland
Ermanno Fionda, Maria Cadeddu, Vinia Mattioli, and Rosa Pacione
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-161,https://doi.org/10.5194/amt-2018-161, 2018
Publication in AMT not foreseen
Short summary
A microwave satellite water vapour column retrieval for polar winter conditions
Christopher Perro, Glen Lesins, Thomas J. Duck, and Maria Cadeddu
Atmos. Meas. Tech., 9, 2241–2252, https://doi.org/10.5194/amt-9-2241-2016,https://doi.org/10.5194/amt-9-2241-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Extension of AVHRR-based climate data records: exploring ways to simulate AVHRR radiances from Suomi NPP VIIRS data
Karl-Göran Karlsson, Nina Håkansson, Salomon Eliasson, Erwin Wolters, and Ronald Scheirer
Atmos. Meas. Tech., 18, 3833–3855, https://doi.org/10.5194/amt-18-3833-2025,https://doi.org/10.5194/amt-18-3833-2025, 2025
Short summary
Improved simulation of thunderstorm characteristics and polarimetric signatures with LIMA two-moment microphysics in AROME
Cloé David, Clotilde Augros, Benoit Vié, François Bouttier, and Tony Le Bastard
Atmos. Meas. Tech., 18, 3715–3745, https://doi.org/10.5194/amt-18-3715-2025,https://doi.org/10.5194/amt-18-3715-2025, 2025
Short summary
Assessment of horizontally oriented ice crystals with a combination of multiangle polarization lidar and cloud Doppler radar
Zhaolong Wu, Patric Seifert, Yun He, Holger Baars, Haoran Li, Cristofer Jimenez, Chengcai Li, and Albert Ansmann
Atmos. Meas. Tech., 18, 3611–3634, https://doi.org/10.5194/amt-18-3611-2025,https://doi.org/10.5194/amt-18-3611-2025, 2025
Short summary
Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
Aaron Sarna, Vincent Meijer, Rémi Chevallier, Allie Duncan, Kyle McConnaughay, Scott Geraedts, and Kevin McCloskey
Atmos. Meas. Tech., 18, 3495–3532, https://doi.org/10.5194/amt-18-3495-2025,https://doi.org/10.5194/amt-18-3495-2025, 2025
Short summary
Riming-dependent snowfall rate and ice water content retrievals for W-band cloud radar
Nina Maherndl, Alessandro Battaglia, Anton Kötsche, and Maximilian Maahn
Atmos. Meas. Tech., 18, 3287–3304, https://doi.org/10.5194/amt-18-3287-2025,https://doi.org/10.5194/amt-18-3287-2025, 2025
Short summary

Cited articles

Acquistapace, C., Loöhnert, U., Maahn, M., and Kollias, P.: A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing, J. Atmos. Ocean. Tech., 36, 781–801, https://doi.org/10.1175/JTECH-D-18-0158.1, 2019. 
Ahlgrimm, M. and Forbes, R.: Improving the Representation of Low Clouds and Drizzle in the ECMWF Model Based on ARM Observations from the Azores, Mon. Weather Rev., 142, 668–685, https://doi.org/10.1175/MWR-D-13-00153.1, 2014. 
Bosisio A., V., Fionda, E., Ciotti, P., and Martellucci, P.: A sky status indicator to detect rain-affected atmospheric thermal emissions observed at ground, IEEE Trans. Geosci. Remote Sens., 51, 9, 4643–4649, 2013. 
Cadeddu, M. P., Turner, D. D., and Liljegren, J. C.: A neural network for real-time retrievals of PWV and LWP from arctic millimeter-wave ground-based observations, IEEE Trans. Geosci. Remote Sens., 47, 7, 1887–1900, 2009. 
Cadeddu, M. P., Marchand, R., Orlandi, E., Turner, D. D., and Mech, M.: Microwave Passive Ground-Based Retrievals of Cloud and Rain Liquid Water Path in Drizzling Clouds: Challenges and Possibilities, IEEE Trans. Geosci. Remote. Sens., 55, 11, 6468–6481, 2017. 
Download
Short summary
A combination of ground-based active and passive observations is used to partition cloud and precipitation liquid water path in precipitating stratocumulous clouds. Results show that neglecting scattering effects from drizzle drops leads to 8–15 % overestimation of the liquid amount in the cloud. In closed-cell systems only ~20 % of the available drizzle in the cloud falls below the cloud base, compared to ~40 % in open-cell systems.
Share