Articles | Volume 13, issue 3
Atmos. Meas. Tech., 13, 1485–1499, 2020
https://doi.org/10.5194/amt-13-1485-2020
Atmos. Meas. Tech., 13, 1485–1499, 2020
https://doi.org/10.5194/amt-13-1485-2020

Research article 31 Mar 2020

Research article | 31 Mar 2020

Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds

Maria P. Cadeddu et al.

Related authors

Experimental total uncertainty of the derived GNSS-integrated water vapour using four co-located techniques in Finland
Ermanno Fionda, Maria Cadeddu, Vinia Mattioli, and Rosa Pacione
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-161,https://doi.org/10.5194/amt-2018-161, 2018
Publication in AMT not foreseen
Short summary
A microwave satellite water vapour column retrieval for polar winter conditions
Christopher Perro, Glen Lesins, Thomas J. Duck, and Maria Cadeddu
Atmos. Meas. Tech., 9, 2241–2252, https://doi.org/10.5194/amt-9-2241-2016,https://doi.org/10.5194/amt-9-2241-2016, 2016
Short summary
Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia
Y. Feng, V. R. Kotamarthi, R. Coulter, C. Zhao, and M. Cadeddu
Atmos. Chem. Phys., 16, 247–264, https://doi.org/10.5194/acp-16-247-2016,https://doi.org/10.5194/acp-16-247-2016, 2016
Short summary
Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances
M. D. Fielding, J. C. Chiu, R. J. Hogan, G. Feingold, E. Eloranta, E. J. O'Connor, and M. P. Cadeddu
Atmos. Meas. Tech., 8, 2663–2683, https://doi.org/10.5194/amt-8-2663-2015,https://doi.org/10.5194/amt-8-2663-2015, 2015
Quantifying the value of redundant measurements at GCOS Reference Upper-Air Network sites
F. Madonna, M. Rosoldi, J. Güldner, A. Haefele, R. Kivi, M. P. Cadeddu, D. Sisterson, and G. Pappalardo
Atmos. Meas. Tech., 7, 3813–3823, https://doi.org/10.5194/amt-7-3813-2014,https://doi.org/10.5194/amt-7-3813-2014, 2014
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Physical characteristics of frozen hydrometeors inferred with parameter estimation
Alan J. Geer
Atmos. Meas. Tech., 14, 5369–5395, https://doi.org/10.5194/amt-14-5369-2021,https://doi.org/10.5194/amt-14-5369-2021, 2021
Short summary
Cloud height measurement by a network of all-sky imagers
Niklas Benedikt Blum, Bijan Nouri, Stefan Wilbert, Thomas Schmidt, Ontje Lünsdorf, Jonas Stührenberg, Detlev Heinemann, Andreas Kazantzidis, and Robert Pitz-Paal
Atmos. Meas. Tech., 14, 5199–5224, https://doi.org/10.5194/amt-14-5199-2021,https://doi.org/10.5194/amt-14-5199-2021, 2021
Short summary
Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021,https://doi.org/10.5194/amt-14-5107-2021, 2021
Short summary
Why we need radar, lidar, and solar radiance observations to constrain ice cloud microphysics
Florian Ewald, Silke Groß, Martin Wirth, Julien Delanoë, Stuart Fox, and Bernhard Mayer
Atmos. Meas. Tech., 14, 5029–5047, https://doi.org/10.5194/amt-14-5029-2021,https://doi.org/10.5194/amt-14-5029-2021, 2021
Short summary
Estimating the optical extinction of liquid water clouds in the cloud base region
Karolina Sarna, David P. Donovan, and Herman W. J. Russchenberg
Atmos. Meas. Tech., 14, 4959–4970, https://doi.org/10.5194/amt-14-4959-2021,https://doi.org/10.5194/amt-14-4959-2021, 2021
Short summary

Cited articles

Acquistapace, C., Loöhnert, U., Maahn, M., and Kollias, P.: A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing, J. Atmos. Ocean. Tech., 36, 781–801, https://doi.org/10.1175/JTECH-D-18-0158.1, 2019. 
Ahlgrimm, M. and Forbes, R.: Improving the Representation of Low Clouds and Drizzle in the ECMWF Model Based on ARM Observations from the Azores, Mon. Weather Rev., 142, 668–685, https://doi.org/10.1175/MWR-D-13-00153.1, 2014. 
Bosisio A., V., Fionda, E., Ciotti, P., and Martellucci, P.: A sky status indicator to detect rain-affected atmospheric thermal emissions observed at ground, IEEE Trans. Geosci. Remote Sens., 51, 9, 4643–4649, 2013. 
Cadeddu, M. P., Turner, D. D., and Liljegren, J. C.: A neural network for real-time retrievals of PWV and LWP from arctic millimeter-wave ground-based observations, IEEE Trans. Geosci. Remote Sens., 47, 7, 1887–1900, 2009. 
Cadeddu, M. P., Marchand, R., Orlandi, E., Turner, D. D., and Mech, M.: Microwave Passive Ground-Based Retrievals of Cloud and Rain Liquid Water Path in Drizzling Clouds: Challenges and Possibilities, IEEE Trans. Geosci. Remote. Sens., 55, 11, 6468–6481, 2017. 
Download
Short summary
A combination of ground-based active and passive observations is used to partition cloud and precipitation liquid water path in precipitating stratocumulous clouds. Results show that neglecting scattering effects from drizzle drops leads to 8–15 % overestimation of the liquid amount in the cloud. In closed-cell systems only ~20 % of the available drizzle in the cloud falls below the cloud base, compared to ~40 % in open-cell systems.