Articles | Volume 13, issue 6
https://doi.org/10.5194/amt-13-2965-2020
https://doi.org/10.5194/amt-13-2965-2020
Research article
 | 
05 Jun 2020
Research article |  | 05 Jun 2020

Comparing lightning observations of the ground-based European lightning location system EUCLID and the space-based Lightning Imaging Sensor (LIS) on the International Space Station (ISS)

Dieter R. Poelman and Wolfgang Schulz

Related authors

Insights into thunderstorm characteristics from geostationary lightning jump and dive observations
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025,https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
Insights into ground strike point properties in Europe through the EUCLID lightning location system
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024,https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Global ground strike point characteristics in negative downward lightning flashes – Part 1: Observations
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021,https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Global ground strike point characteristics in negative downward lightning flashes – Part 2: Algorithm validation
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Leandro Z. S. Campos, Michihiro Matsui, Dustin Hill, Marcelo Saba, and Hugh Hunt
Nat. Hazards Earth Syst. Sci., 21, 1921–1933, https://doi.org/10.5194/nhess-21-1921-2021,https://doi.org/10.5194/nhess-21-1921-2021, 2021
Short summary
Analysis of lightning outliers in the EUCLID network
Dieter R. Poelman, Wolfgang Schulz, Rudolf Kaltenboeck, and Laurent Delobbe
Atmos. Meas. Tech., 10, 4561–4572, https://doi.org/10.5194/amt-10-4561-2017,https://doi.org/10.5194/amt-10-4561-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Optimizing cloud optical parameterizations in Radiative Transfer for TOVS (RTTOV v12.3) for data assimilation of satellite visible reflectance data: an assessment using observed and synthetic images
Yongbo Zhou, Tianrui Cao, and Lijian Zhu
Atmos. Meas. Tech., 18, 3267–3285, https://doi.org/10.5194/amt-18-3267-2025,https://doi.org/10.5194/amt-18-3267-2025, 2025
Short summary
Errors in stereoscopic retrievals of cloud top height for single-layer clouds
Jesse Loveridge and Larry Di Girolamo
Atmos. Meas. Tech., 18, 3009–3033, https://doi.org/10.5194/amt-18-3009-2025,https://doi.org/10.5194/amt-18-3009-2025, 2025
Short summary
Assessment and application of melting-layer simulations for spaceborne radars within the RTTOV-SCATT v13.1 model
Rohit Mangla, Mary Borderies, Philippe Chambon, Alan Geer, and James Hocking
Atmos. Meas. Tech., 18, 2751–2779, https://doi.org/10.5194/amt-18-2751-2025,https://doi.org/10.5194/amt-18-2751-2025, 2025
Short summary
A method to retrieve mixed-phase cloud vertical structure from airborne lidar
Ewan Crosbie, Johnathan W. Hair, Amin R. Nehrir, Richard A. Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
Atmos. Meas. Tech., 18, 2639–2658, https://doi.org/10.5194/amt-18-2639-2025,https://doi.org/10.5194/amt-18-2639-2025, 2025
Short summary
Attribution of riming and aggregation processes by application of the vertical distribution of particle shape (VDPS) and spectral retrieval techniques to cloud radar observations
Audrey Teisseire, Anne-Claire Billault-Roux, Teresa Vogl, and Patric Seifert
Atmos. Meas. Tech., 18, 1499–1517, https://doi.org/10.5194/amt-18-1499-2025,https://doi.org/10.5194/amt-18-1499-2025, 2025
Short summary

Cited articles

Azadifar, M., Rachidi, F., Rubinstein, M., Paolone, M., Diendorfer, G., Pichler, H., Schulz, W., Pavanello, D., and Romero, C.: Evaluation of the performance characteristics of the European Lightning Detection Network EUCLID in the Alps region for upward negative flashes using direct measurements at the instrumented Säntis Tower, J. Geophys. Res.-Atmos., 121, 595–606, https://doi.org/10.1002/2015JD024259, 2016. 
Biagi, C. J., Cummins, K. L., Kehoe, K. E., and Krider, E. P.: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004, J. Geophys. Res.-Atmos., 112, D05208, https://doi.org/10.1029/2006JD007341, 2007. 
Bitzer, P. M., Burchfield, J. C., and Christian, H. J.: A Bayesian approach to assess the performance of lightning detection systems, J. Atmos. Ocean. Tech., 33, 563–578, https://doi.org/10.1175/JTECH-D-15-0032.1, 2016. 
Blakeslee, R. J.: Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data P0.2, Dataset available online from the NASA Global Hydrology Resource Center DAAC, Huntsville, Alabama, USA, https://doi.org/10.5067/LIS/ISSLIS/DATA107, 2019. 
Blakeslee, R. J. and Koshak, W. J.: LIS on ISS: Expanded Global Coverage and Enhanced Applications, Earth Obs., 28, 4–14, 2016. 
Download
Short summary
The objective of this work is to quantify the similarities and contrasts between the lightning observations from the Lightning Imaging Sensor (LIS) on the International Space Station (ISS) and the ground-based European Cooperation for Lightning Detection (EUCLID) network. This work is timely, given that the Meteosat Third Generation (MTG), which has a lightning imager (LI) on board, is going to be launched in 2 years.
Share