Articles | Volume 13, issue 9
https://doi.org/10.5194/amt-13-4619-2020
https://doi.org/10.5194/amt-13-4619-2020
Research article
 | 
31 Aug 2020
Research article |  | 31 Aug 2020

Establishment of AIRS climate-level radiometric stability using radiance anomaly retrievals of minor gases and sea surface temperature

L. Larrabee Strow and Sergio DeSouza-Machado

Related authors

kCARTA: a fast pseudo line-by-line radiative transfer algorithm with analytic Jacobians, fluxes, nonlocal thermodynamic equilibrium, and scattering for the infrared
Sergio DeSouza-Machado, L. Larrabee Strow, Howard Motteler, and Scott Hannon
Atmos. Meas. Tech., 13, 323–339, https://doi.org/10.5194/amt-13-323-2020,https://doi.org/10.5194/amt-13-323-2020, 2020
Short summary
Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm
Sergio DeSouza-Machado, L. Larrabee Strow, Andrew Tangborn, Xianglei Huang, Xiuhong Chen, Xu Liu, Wan Wu, and Qiguang Yang
Atmos. Meas. Tech., 11, 529–550, https://doi.org/10.5194/amt-11-529-2018,https://doi.org/10.5194/amt-11-529-2018, 2018
Short summary
High-resolution tropospheric carbon monoxide profiles retrieved from CrIS and TROPOMI
Dejian Fu, Kevin W. Bowman, Helen M. Worden, Vijay Natraj, John R. Worden, Shanshan Yu, Pepijn Veefkind, Ilse Aben, Jochen Landgraf, Larrabee Strow, and Yong Han
Atmos. Meas. Tech., 9, 2567–2579, https://doi.org/10.5194/amt-9-2567-2016,https://doi.org/10.5194/amt-9-2567-2016, 2016
The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record
Juying X. Warner, Zigang Wei, L. Larrabee Strow, Russell R. Dickerson, and John B. Nowak
Atmos. Chem. Phys., 16, 5467–5479, https://doi.org/10.5194/acp-16-5467-2016,https://doi.org/10.5194/acp-16-5467-2016, 2016
Short summary
A novel retrieval of daytime atmospheric dust and volcanic ash heights through a synergy of AIRS infrared radiances and MODIS L2 optical depths
S. DeSouza-Machado, L. Strow, E. Maddy, O. Torres, G. Thomas, D. Grainger, and A. Robinson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-443-2015,https://doi.org/10.5194/amtd-8-443-2015, 2015
Revised manuscript not accepted
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Hourly surface nitrogen dioxide retrieval from GEMS tropospheric vertical column densities: benefit of using time-contiguous input features for machine learning models
Janek Gödeke, Andreas Richter, Kezia Lange, Peter Maaß, Hyunkee Hong, Hanlim Lee, and Junsung Park
Atmos. Meas. Tech., 18, 3747–3779, https://doi.org/10.5194/amt-18-3747-2025,https://doi.org/10.5194/amt-18-3747-2025, 2025
Short summary
Remote sensing estimates of time-resolved HONO and NO2 emission rates and lifetimes in wildfires
Carley D. Fredrickson, Scott J. Janz, Lok N. Lamsal, Ursula A. Jongebloed, Joshua L. Laughner, and Joel A. Thornton
Atmos. Meas. Tech., 18, 3669–3689, https://doi.org/10.5194/amt-18-3669-2025,https://doi.org/10.5194/amt-18-3669-2025, 2025
Short summary
A study of measurement scenarios for the future CO2M mission: avoidance of detector saturation and the impact on XCO2 retrievals
Michael Weimer, Michael Hilker, Stefan Noël, Max Reuter, Michael Buchwitz, Blanca Fuentes Andrade, Rüdiger Lang, Bernd Sierk, Yasjka Meijer, Heinrich Bovensmann, John P. Burrows, and Hartmut Bösch
Atmos. Meas. Tech., 18, 3321–3340, https://doi.org/10.5194/amt-18-3321-2025,https://doi.org/10.5194/amt-18-3321-2025, 2025
Short summary
Assimilation of volcanic sulfur dioxide products from IASI and TROPOMI into the chemical transport model MOCAGE: case study of the 2021 La Soufrière Saint Vincent eruption with the March 2022 version of MOCAGE
Mickaël Bacles, Jonathan Améric, and Vincent Guidard
Atmos. Meas. Tech., 18, 2659–2680, https://doi.org/10.5194/amt-18-2659-2025,https://doi.org/10.5194/amt-18-2659-2025, 2025
Short summary
In-flight estimation of instrument spectral response functions using sparse representations
Jihanne El Haouari, Jean-Michel Gaucel, Christelle Pittet, Jean-Yves Tourneret, and Herwig Wendt
Atmos. Meas. Tech., 18, 2573–2590, https://doi.org/10.5194/amt-18-2573-2025,https://doi.org/10.5194/amt-18-2573-2025, 2025
Short summary

Cited articles

Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0.120 km), Tech. rep., Environmental Research Papers, No. 95, Air Force Geophysics Laboratory Hanscom AFB, USA, 1986. a
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE, https://doi.org/10.17882/42182, 2019. a
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua Mission, IEEE T. Geosci. Remote, 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356, 2003. a
Aumann, H. H., Broberg, S., Manning, E., and Pagano, T.: Radiometric Stability Validation of 17 Years of AIRS Data Using Sea Surface Temperatures, Geophys. Rese. Lett., 46, 12504–12510, https://doi.org/10.1029/2019GL085098, 2019. a, b, c
Aumann, H. H., Broberg, S., Manning, E., Pagano, T., Sutin, B., and Strow, L.: AIRS Level 1C Algorithm Theoretical Basis Document, Version 6.7, available at: https://docserver.gesdisc.eosdis.nasa.gov/public/project/AIRS/L1C_ATBD.pdf, last access: 28 August 2020. a, b, c, d, e, f, g
Download
Short summary
The NASA AIRS satellite instrument has measured the infrared emission of the Earth continuously since 2002. If AIRS measurements are stable, these radiances can provide globally consistent multi-decadal trends of important climate variables, including the Earth's surface temperature, and the atmospheric temperature and humidity vs. height. Using the sensitivity of the AIRS radiances to well-known carbon dioxide trends, we show that AIRS is stable to 0.02 K per decade, well below climate trends.
Share