Articles | Volume 13, issue 11
https://doi.org/10.5194/amt-13-6067-2020
https://doi.org/10.5194/amt-13-6067-2020
Research article
 | 
16 Nov 2020
Research article |  | 16 Nov 2020

Variability of the Brunt–Väisälä frequency at the OH-airglow layer height at low and midlatitudes

Sabine Wüst, Michael Bittner, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III

Related authors

Temperature profiles combined from lidar and airglow measurements
Thomas Trickl, Hannes Vogelmann, Michael Bittner, Gerald Nedoluha, Carsten Schmidt, Wolfgang Steinbrecht, and Sabine Wüst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1952,https://doi.org/10.5194/egusphere-2025-1952, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Gravity waves above the northern Atlantic and Europe during streamer events using Aeolus
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech., 18, 1591–1607, https://doi.org/10.5194/amt-18-1591-2025,https://doi.org/10.5194/amt-18-1591-2025, 2025
Short summary
OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of variations induced by the 11-year solar cycle, the QBO, and other factors
Carsten Schmidt, Lisa Küchelbacher, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 16, 4331–4356, https://doi.org/10.5194/amt-16-4331-2023,https://doi.org/10.5194/amt-16-4331-2023, 2023
Short summary
Analysis of 2D airglow imager data with respect to dynamics using machine learning
René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner
Atmos. Meas. Tech., 16, 3141–3153, https://doi.org/10.5194/amt-16-3141-2023,https://doi.org/10.5194/amt-16-3141-2023, 2023
Short summary
Hydroxyl airglow observations for investigating atmospheric dynamics: results and challenges
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023,https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary

Cited articles

Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements, J. Geophys. Res., 102, 19969–19976, 1997. 
Andrews, D. G.: An introduction to atmospheric physics, Cambridge University Press, Cambridge, UK, 2000. 
Baker, D. J. and Stair Jr., A. T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scripta, 37, 611–622, 1988. 
Bittner, M., Offermann, D., and Graef, H.-H.: Mesopause temperature variability above a midlatitude station in Europe, J. Geophys. Res., 105, 2045–2058, 2000. 
Bittner, M., Offermann, D., Graef, H.-H., Donner, M., and Hamilton, K.: An 18-year time series of OH rotational temperatures and middle atmosphere decadal variations, J. Atmos. Sol.-Terr. Phy., 64, 1147–1166, 2002. 
Download
Short summary
With airglow spectrometers, the temperature in the upper mesosphere/lower thermosphere can be derived each night. The data allow to estimate the amount of energy which is transported by small-scale atmospheric waves, known as gravity waves. In order to do this, information about the Brunt–Väisälä frequency and its evolution during the year is necessary. This is provided here for low and midlatitudes based on 18 years of satellite data.
Share