Articles | Volume 13, issue 12
Atmos. Meas. Tech., 13, 7047–7057, 2020
https://doi.org/10.5194/amt-13-7047-2020
Atmos. Meas. Tech., 13, 7047–7057, 2020
https://doi.org/10.5194/amt-13-7047-2020

Research article 22 Dec 2020

Research article | 22 Dec 2020

Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers

Macey W. Sandford et al.

Related authors

Detection and quantification of CH4 plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data
Jakob Borchardt, Konstantin Gerilowski, Sven Krautwurst, Heinrich Bovensmann, Andrew K. Thorpe, David R. Thompson, Christian Frankenberg, Charles E. Miller, Riley M. Duren, and John Philip Burrows
Atmos. Meas. Tech., 14, 1267–1291, https://doi.org/10.5194/amt-14-1267-2021,https://doi.org/10.5194/amt-14-1267-2021, 2021
Short summary
Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty
Longlei Li, Natalie M. Mahowald, Ron L. Miller, Carlos Pérez García-Pando, Martina Klose, Douglas S. Hamilton, Maria Gonçalves Ageitos, Paul Ginoux, Yves Balkanski, Robert O. Green, Olga Kalashnikova, Jasper F. Kok, Vincenzo Obiso, David Paynter, and David R. Thompson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-547,https://doi.org/10.5194/acp-2020-547, 2020
Revised manuscript accepted for ACP
Short summary
Spectroscopic Imaging of Sub-Kilometer Spatial Structure in Lower Tropospheric Water Vapor
David R. Thompson, Brian H. Kahn, Philip G. Brodrick, Matthew D. Lebsock, Mark Richardson, and Robert O. Green
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-346,https://doi.org/10.5194/amt-2020-346, 2020
Revised manuscript accepted for AMT
Short summary
Towards accurate methane point-source quantification from high-resolution 2-D plume imagery
Siraput Jongaramrungruang, Christian Frankenberg, Georgios Matheou, Andrew K. Thorpe, David R. Thompson, Le Kuai, and Riley M. Duren
Atmos. Meas. Tech., 12, 6667–6681, https://doi.org/10.5194/amt-12-6667-2019,https://doi.org/10.5194/amt-12-6667-2019, 2019
Short summary
Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space
Daniel H. Cusworth, Daniel J. Jacob, Daniel J. Varon, Christopher Chan Miller, Xiong Liu, Kelly Chance, Andrew K. Thorpe, Riley M. Duren, Charles E. Miller, David R. Thompson, Christian Frankenberg, Luis Guanter, and Cynthia A. Randles
Atmos. Meas. Tech., 12, 5655–5668, https://doi.org/10.5194/amt-12-5655-2019,https://doi.org/10.5194/amt-12-5655-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving cloud type classification of ground-based images using region covariance descriptors
Yuzhu Tang, Pinglv Yang, Zeming Zhou, Delu Pan, Jianyu Chen, and Xiaofeng Zhao
Atmos. Meas. Tech., 14, 737–747, https://doi.org/10.5194/amt-14-737-2021,https://doi.org/10.5194/amt-14-737-2021, 2021
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Microwave single-scattering properties of non-spheroidal raindrops
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020,https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020,https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary
Improved cloud detection over sea ice and snow during Arctic summer using MERIS data
Larysa Istomina, Henrik Marks, Marcus Huntemann, Georg Heygster, and Gunnar Spreen
Atmos. Meas. Tech., 13, 6459–6472, https://doi.org/10.5194/amt-13-6459-2020,https://doi.org/10.5194/amt-13-6459-2020, 2020

Cited articles

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res.-Atmos., 103, 32141–32157, 1998. 
Altinok, A., Thompson, D. R., Bornstein, B., Chien, S. A., Doubleday, J., and Bellardo, J.: Real-Time Orbital Image Analysis Using Decision Forests, with a Deployment Onboard the IPEX Spacecraft, J. Field Robot., 33, 187–204, 2016. 
Chien, S., Doubleday, J., Thompson, D. R., Wagstaff, K. L., Bellardo, J., Francis, C., Baumgarten, E., Williams, A., Yee, E., Stanton, E., and Piug-Suari, J.: Onboard autonomy on the intelligent payload experiment cubesat mission, J. Aerosp. Inf. Syst., 16, 307–315, 2016. 
Chien, S., Yelamanchili, A., and Doubleday, J.: Policy-based automated science coverage scheduling for earth science mission analysis and operations (NISAR, ECOSTRESS, OCO-3, and EMIT), Earth Science Technology Forum (ESTF 2019), 11–13 June 2019, Moffett Field, California, USA, 2019. 
Dally, W. J., Yatish, T., and Song, H.: Domain-specific hardware accelerators, Commun. ACM, 63, 48–57, 2020. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
We demonstrate an onboard cloud-screening approach to significantly reduce the amount of cloud-contaminated data transmitted from orbit. We have produced location-specific models that improve performance by taking into account the unique cloud statistics in different latitudes. We have shown that screening clouds based on their location or surface type will improve the ability for a cloud-screening tool to improve the volume of usable science data.