Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1205-2021
https://doi.org/10.5194/amt-14-1205-2021
Research article
 | 
16 Feb 2021
Research article |  | 16 Feb 2021

The De-Icing Comparison Experiment (D-ICE): a study of broadband radiometric measurements under icing conditions in the Arctic

Christopher J. Cox, Sara M. Morris, Taneil Uttal, Ross Burgener, Emiel Hall, Mark Kutchenreiter, Allison McComiskey, Charles N. Long, Bryan D. Thomas, and James Wendell

Related authors

Derivation and compilation of lower atmospheric properties relating to temperature, wind, stability, moisture, and surface radiation budget over the central Arctic sea ice during MOSAiC
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-141,https://doi.org/10.5194/essd-2023-141, 2023
Preprint under review for ESSD
Short summary
Thermodynamic and Kinematic Drivers of Atmospheric Boundary Layer Stability in the Central Arctic during MOSAiC
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
EGUsphere, https://doi.org/10.5194/egusphere-2023-824,https://doi.org/10.5194/egusphere-2023-824, 2023
Short summary
An Overview of the Vertical Structure of the Atmospheric Boundary Layer in the Central Arctic during MOSAiC
Gina C. Jozef, John J. Cassano, Sandro Dahlke, Mckenzie Dice, Christopher J. Cox, and Gijs de Boer
EGUsphere, https://doi.org/10.5194/egusphere-2023-780,https://doi.org/10.5194/egusphere-2023-780, 2023
Short summary
Snowfall and snow accumulation during the MOSAiC winter and spring seasons
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022,https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Measurements from the University of Colorado RAAVEN Uncrewed Aircraft System during ATOMIC
Gijs de Boer, Steven Borenstein, Radiance Calmer, Christopher Cox, Michael Rhodes, Christopher Choate, Jonathan Hamilton, Jackson Osborn, Dale Lawrence, Brian Argrow, and Janet Intrieri
Earth Syst. Sci. Data, 14, 19–31, https://doi.org/10.5194/essd-14-19-2022,https://doi.org/10.5194/essd-14-19-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Instruments and Platforms
A Comparative Analysis of In-Situ Measurements of High Altitude Cirrus in the Tropics
Francesco Cairo, Martina Krämer, Armin Afchine, Luca Di Liberto, Sergey Khaykin, Lorenza Lucaferri, Valentin Mitev, Max Port, Christian Rolf, Marcel Snels, Nicole Spelten, Ralf Weigel, and Stephan Borrmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-112,https://doi.org/10.5194/egusphere-2023-112, 2023
Short summary
In situ ground-based mobile measurement of lightning events above central Europe
Jakub Kákona, Jan Mikeš, Iva Ambrožová, Ondřej Ploc, Olena Velychko, Lembit Sihver, and Martin Kákona
Atmos. Meas. Tech., 16, 547–561, https://doi.org/10.5194/amt-16-547-2023,https://doi.org/10.5194/amt-16-547-2023, 2023
Short summary
A phase separation inlet for droplets, ice residuals, and interstitial aerosol particles
Libby Koolik, Michael Roesch, Carmen Dameto de Espana, Christopher Nathan Rapp, Lesly J. Franco Deloya, Chuanyang Shen, A. Gannet Hallar, Ian B. McCubbin, and Daniel J. Cziczo
Atmos. Meas. Tech., 15, 3213–3222, https://doi.org/10.5194/amt-15-3213-2022,https://doi.org/10.5194/amt-15-3213-2022, 2022
Short summary
Simulation and field campaign evaluation of an optical particle counter on a fixed-wing UAV
Joseph Girdwood, Warren Stanley, Chris Stopford, and David Brus
Atmos. Meas. Tech., 15, 2061–2076, https://doi.org/10.5194/amt-15-2061-2022,https://doi.org/10.5194/amt-15-2061-2022, 2022
Short summary
Cloud microphysical measurements at a mountain observatory: comparison between shadowgraph imaging and phase Doppler interferometry
Moein Mohammadi, Jakub L. Nowak, Guus Bertens, Jan Moláček, Wojciech Kumala, and Szymon P. Malinowski
Atmos. Meas. Tech., 15, 965–985, https://doi.org/10.5194/amt-15-965-2022,https://doi.org/10.5194/amt-15-965-2022, 2022
Short summary

Cited articles

Alados-Arboledas, L., Vida, J., and Jiménez, J. I.: Effects of solar radiation on performance of pyrgeometers with silicon domes, J. Atmos. Ocean. Tech., 5, 666–670, https://doi.org/10.1175/1520-0426(1988)005<0666:EOSROT>2.0.CO;2, 1988. 
Albrecht, B. and Cox, S. K.: Procedures for improving pyrgeometer performance, J. Appl. Meteorol., 16, 188–197, https://doi.org/10.1175/1520-0450(1977)016<0190:PFIPP>2.0.CO;2, 1977. 
Atmospheric Radiation Measurement (ARM) user facility: Balloon-Borne Sounding System (SONDEWNPN), 1/23/2018, North Slope Alaska (NSA) Central Facility, Barrow AK (C1), compiled by: Keeler, E., Ritsche, M., Coulter, R., Kyrouac, J., and Holdridge, D., ARM Data Center, https://doi.org/10.5439/1021460, updated hourly, 1994. 
Atmospheric Radiation Measurement (ARM) user facility: Data Quality Assessment for ARM Radiation Data (QCRAD1LONG), 8/1/2017 to 8/1/2018, North Slope Alaska (NSA) Central Facility, Barrow AK (C1), compiled by: Riihimaki, L., Shi, Y., Zhang, D., and Long, C., ARM Data Center, https://doi.org/10.5439/1027372, updated hourly. 1996. 
Atmospheric Radiation Measurement (ARM) user facility: Ceilometer (CEIL), 1/23/2018, North Slope Alaska (NSA) Central Facility, Barrow AK (C1), compiled by: Morris, V., ARM Data Center, https://doi.org/10.5439/1181954, updated hourly, 2010. 
Download
Short summary
Solar and infrared radiation are measured regularly for research, industry, and climate monitoring. In cold climates, icing of sensors is a poorly constrained source of uncertainty. D-ICE was carried out in Alaska to document the effectiveness of ice-mitigation technology and quantify errors associated with ice. Technology was more effective than anticipated, and while instantaneous errors were large, mean biases were small. Attributes of effective ice mitigation design were identified.