Articles | Volume 14, issue 7
https://doi.org/10.5194/amt-14-4929-2021
https://doi.org/10.5194/amt-14-4929-2021
Research article
 | 
14 Jul 2021
Research article |  | 14 Jul 2021

W-band radar observations for fog forecast improvement: an analysis of model and forward operator errors

Alistair Bell, Pauline Martinet, Olivier Caumont, Benoît Vié, Julien Delanoë, Jean-Charles Dupont, and Mary Borderies

Related authors

Developments on a 22GHz Microwave Radiometer and Reprocessing of 13-Year Time Series for Water Vapour Studies
Alistair Bell, Eric Sauvageat, Gunter Stober, Klemens Hocke, and Axel Murk
EGUsphere, https://doi.org/10.5194/egusphere-2024-2474,https://doi.org/10.5194/egusphere-2024-2474, 2024
Short summary
Climatology of estimated liquid water content and scaling factor for warm clouds using radar–microwave radiometer synergy
Pragya Vishwakarma, Julien Delanoë, Susana Jorquera, Pauline Martinet, Frederic Burnet, Alistair Bell, and Jean-Charles Dupont
Atmos. Meas. Tech., 16, 1211–1237, https://doi.org/10.5194/amt-16-1211-2023,https://doi.org/10.5194/amt-16-1211-2023, 2023
Short summary
An optimal estimation algorithm for the retrieval of fog and low cloud thermodynamic and micro-physical properties
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022,https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary

Cited articles

American Meteorological Society: Fog. Glossary of Meteorology, available at: http://glossary.ametsoc.org/wiki/fog, last access: 5 July 2021. a
Atlas, D.: The estimation of cloud parameters by radar, J. Meteorol., 11, 309–317, 1954. a
Bauer, P., Moreau, E., Chevallier, F., and O'keeffe, U.: Multiple-scattering microwave radiative transfer for data assimilation applications, Q. J. Roy. Meteor. Soc., 132, 1259–1281, 2006. a
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008. a
Borderies, M., Caumont, O., Augros, C., Bresson, É., Delanoë, J., Ducrocq, V., Fourrié, N., Bastard, T. L., and Nuret, M.: Simulation of W-band radar reflectivity for model validation and data assimilation, Q. J. Roy. Meteor. Soc., 144, 391–403, 2018. a, b, c
Download
Short summary
This paper presents work towards making retrievals on the liquid water content in fog and low clouds. Future retrievals will rely on a radar simulator and high-resolution forecast. In this work, real observations are used to assess the errors associated with the simulator and forecast. A selection method to reduce errors associated with the forecast is proposed. It is concluded that the distribution of errors matches the requirements for future retrievals.