Articles | Volume 14, issue 12
Atmos. Meas. Tech., 14, 7959–7974, 2021
https://doi.org/10.5194/amt-14-7959-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: MIPAS ESA Level 2 version 8 products: algorithms, product...
Research article
21 Dec 2021
Research article
| 21 Dec 2021
Phosgene distribution derived from MIPAS ESA v8 data: intercomparisons and trends
Paolo Pettinari et al.
Related authors
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021, https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Short summary
The level-2 v8 database from the measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), aboard the European Space Agency Envisat satellite, containing atmospheric fields of pressure, temperature, and volume mixing ratio of 21 trace gases, is described in this paper. The database covers all the measurements acquired by MIPAS (from July 2002 to April 2012). The number of species included makes it of particular importance for the studies of stratospheric chemistry.
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
EGUsphere, https://doi.org/10.5194/egusphere-2022-479, https://doi.org/10.5194/egusphere-2022-479, 2022
Short summary
Short summary
The long-term comparison between observed and simulated outgoing longwave radiances represents a strict test to evaluate climate model performance. In this work, 9 years of synthetic spectrally resolved radiances simulated on-line on the basis of the atmospheric fields predicted by the EC-Earth GCM (version 3.3.3) in clear-sky conditions are compared to a IASI spectral radiance climatology in order to detect model biases in temperature and humidity at different atmospheric levels.
Simone Ceccherini
Atmos. Meas. Tech., 15, 4407–4410, https://doi.org/10.5194/amt-15-4407-2022, https://doi.org/10.5194/amt-15-4407-2022, 2022
Short summary
Short summary
The equivalence between the data fusion performed using the Kalman filter and the Complete Data Fusion has been proved, and a generalization of the Complete Data Fusion formula, that is valid also in the case that the noise error covariance matrices of the fused products are singular, is derived. The two methods are also equivalent to the measurement–space–solution data fusion method, and for moderately nonlinear problems, the three methods are all equivalent to the simultaneous retrieval.
Gerald Wetzel, Michael Höpfner, Hermann Oelhaf, Felix Friedl-Vallon, Anne Kleinert, Guido Maucher, Miriam Sinnhuber, Janna Abalichin, Angelika Dehn, and Piera Raspollini
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-114, https://doi.org/10.5194/amt-2022-114, 2022
Preprint under review for AMT
Short summary
Short summary
Satellite measurements of stratospheric trace gases are essential for monitoring the distribution and trend of these species on a global scale. Here, we compare the final MIPAS ESA Level 2 version 8 data (temperature and trace gases) with measurements obtained with the balloon version of MIPAS in terms of data agreement of both sensors including combined errors. For most gases, we find a 5 % to 20 % agreement of the retrieved vertical profiles of both MIPAS instruments in the lower stratosphere.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Marco Ridolfi, Cecilia Tirelli, Simone Ceccherini, Claudio Belotti, Ugo Cortesi, and Luca Palchetti
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-82, https://doi.org/10.5194/amt-2022-82, 2022
Preprint under review for AMT
Short summary
Short summary
Synergistic Retrieval (SR) and Complete Data Fusion (CDF) methods exploit the complementarity of coincident remote sensing measurements. We assess the performance of the SR and CDF methods on the basis of synthetic measurements of the FORUM and IASI-NG missions. In case of perfectly matching measurements, SR and CDF results differ by less than 1/10 of the error due to measurement noise. In case of a realistic mismatch, the two methods show differences of the order of their error bars.
Piera Raspollini, Enrico Arnone, Flavio Barbara, Massimo Bianchini, Bruno Carli, Simone Ceccherini, Martyn P. Chipperfield, Angelika Dehn, Stefano Della Fera, Bianca Maria Dinelli, Anu Dudhia, Jean-Marie Flaud, Marco Gai, Michael Kiefer, Manuel López-Puertas, David P. Moore, Alessandro Piro, John J. Remedios, Marco Ridolfi, Harjinder Sembhi, Luca Sgheri, and Nicola Zoppetti
Atmos. Meas. Tech., 15, 1871–1901, https://doi.org/10.5194/amt-15-1871-2022, https://doi.org/10.5194/amt-15-1871-2022, 2022
Short summary
Short summary
The MIPAS instrument onboard the ENVISAT satellite provided 10 years of measurements of the atmospheric emission al limb that allow for the retrieval of latitude- and altitude-resolved atmospheric composition. We describe the improvements implemented in the retrieval algorithm used for the full mission reanalysis, which allows for the generation of the global distributions of 21 atmospheric constituents plus temperature with increased accuracy with respect to previously generated data.
Maya Ben-Yami, Hilke Oetjen, Helen Brindley, William Cossich, Dulce Lajas, Tiziano Maestri, Davide Magurno, Piera Raspollini, Luca Sgheri, and Laura Warwick
Atmos. Meas. Tech., 15, 1755–1777, https://doi.org/10.5194/amt-15-1755-2022, https://doi.org/10.5194/amt-15-1755-2022, 2022
Short summary
Short summary
Spectral emissivity is a key property of the Earth's surface. Few measurements exist in the far-infrared, despite recent work showing that its contribution is important for accurate modelling of global climate. In preparation for ESA’s EE9 FORUM mission (launch in 2026), this study takes the first steps towards the development of an operational emissivity retrieval for FORUM by investigating the sensitivity of the emissivity product to different physical and operational parameters.
Sören Johansson, Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Michael Höpfner, Anne Kleinert, Tom Neubert, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 22, 3675–3691, https://doi.org/10.5194/acp-22-3675-2022, https://doi.org/10.5194/acp-22-3675-2022, 2022
Short summary
Short summary
We present GLORIA airborne cross sections of PAN, C2H6, HCOOH, CH3OH, and C2H4 in the South Atlantic UTLS in September/October 2019. Filamentary structures and a large plume were observed. Backward trajectories indicate that measured pollutants come from South America and central Africa. Comparisons to CAMS show structural agreement of the measured distributions. PAN absolute VMRs agree with the GLORIA measurements, C2H6 and HCOOH are simulated too low, and CH3OH and C2H4 are too high.
Luca Sgheri, Claudio Belotti, Maya Ben-Yami, Giovanni Bianchini, Bernardo Carnicero Dominguez, Ugo Cortesi, William Cossich, Samuele Del Bianco, Gianluca Di Natale, Tomás Guardabrazo, Dulce Lajas, Tiziano Maestri, Davide Magurno, Hilke Oetjen, Piera Raspollini, and Cristina Sgattoni
Atmos. Meas. Tech., 15, 573–604, https://doi.org/10.5194/amt-15-573-2022, https://doi.org/10.5194/amt-15-573-2022, 2022
Short summary
Short summary
The FORUM instrument will look at the Earth's atmosphere from a satellite, covering a spectral range responsible for about 95 % of the radiation lost by our planet. FORUM helps to measure the imbalance between incoming and outgoing radiation that is responsible for the increasing average temperatures on Earth. The end-to-end simulator is a chain of codes that simulates the FORUM measurement process. The goal of the project is to study how the instrument reacts to different retrieval conditions.
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021, https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Short summary
The level-2 v8 database from the measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), aboard the European Space Agency Envisat satellite, containing atmospheric fields of pressure, temperature, and volume mixing ratio of 21 trace gases, is described in this paper. The database covers all the measurements acquired by MIPAS (from July 2002 to April 2012). The number of species included makes it of particular importance for the studies of stratospheric chemistry.
Michael Höpfner, Oliver Kirner, Gerald Wetzel, Björn-Martin Sinnhuber, Florian Haenel, Sören Johansson, Johannes Orphal, Roland Ruhnke, Gabriele Stiller, and Thomas von Clarmann
Atmos. Chem. Phys., 21, 18433–18464, https://doi.org/10.5194/acp-21-18433-2021, https://doi.org/10.5194/acp-21-18433-2021, 2021
Short summary
Short summary
BrONO2 is an important reservoir gas for inorganic stratospheric bromine linked to the chemical cycles of stratospheric ozone depletion. Presently infrared limb sounding is the only way to measure BrONO2 in the atmosphere. We provide global distributions of BrONO2 derived from MIPAS observations 2002–2012. Comparisons with EMAC atmospheric modelling show an overall agreement and enable us to derive an independent estimate of stratospheric bromine of 21.2±1.4pptv based on the BrONO2 measurements.
Gianluca Di Natale, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Marco Gai, Alessio Montori, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 14, 6749–6758, https://doi.org/10.5194/amt-14-6749-2021, https://doi.org/10.5194/amt-14-6749-2021, 2021
Short summary
Short summary
The importance of cirrus and mixed-phase clouds in the Earth radiation budget has been proven by many studies. In this paper the properties that characterize these clouds are retrieved from lidar and far-infrared spectral measurements performed in winter 2018/19 on the Zugspitze (Germany). The synergy of lidar and spectrometer measurements allowed us to assess the exponent k of the power-law relationship between the backscattering and the extinction coefficients.
Luca Palchetti, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Bertrand Cluzet, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Dina Khordakova, Alessio Montori, Hilke Oetjen, Markus Rettinger, Christian Rolf, Dirk Schuettemeyer, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Frank Gunther Wienhold
Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021, https://doi.org/10.5194/essd-13-4303-2021, 2021
Short summary
Short summary
The FIRMOS far-infrared (IR) prototype, developed for the preparation of the ESA FORUM mission, was deployed for the first time at Mt. Zugspitze at 3000 m altitude to measure the far-IR spectrum of atmospheric emissions. The measurements, including co-located radiometers, lidars, radio soundings, weather, and surface properties, provide a unique dataset to study radiative properties of water vapour, cirrus clouds, and snow emissivity over the IR emissions, including the under-explored far-IR.
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021, https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary
Short summary
Measurements of the pollutants C2H6, C2H2, HCOOH, and PAN were performed in the North Atlantic UTLS region with the airborne limb imager GLORIA in 2017. Enhanced amounts of these species were detected in the upper troposphere and even in the lowermost stratosphere (PAN). Main sources of these gases are forest fires in North America and anthropogenic pollution in South Asia. Simulations of EMAC and CAMS are qualitatively able to reproduce the measured data but underestimate the absolute amounts.
Nicola Zoppetti, Simone Ceccherini, Bruno Carli, Samuele Del Bianco, Marco Gai, Cecilia Tirelli, Flavio Barbara, Rossana Dragani, Antti Arola, Jukka Kujanpää, Jacob C. A. van Peet, Ronald van der A, and Ugo Cortesi
Atmos. Meas. Tech., 14, 2041–2053, https://doi.org/10.5194/amt-14-2041-2021, https://doi.org/10.5194/amt-14-2041-2021, 2021
Short summary
Short summary
The new platforms for Earth observation from space will provide an enormous amount of data that can be hard to exploit as a whole. The Complete Data Fusion algorithm can reduce the data volume while retaining the information of the full dataset. In this work, we applied the Complete Data Fusion algorithm to simulated ozone profiles, and the results show that the fused products are characterized by higher information content compared to individual L2 products.
Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel
Atmos. Chem. Phys., 20, 14695–14715, https://doi.org/10.5194/acp-20-14695-2020, https://doi.org/10.5194/acp-20-14695-2020, 2020
Short summary
Short summary
We present high-resolution measurements of pollutant trace gases (PAN, C2H2, and HCOOH) in the Asian monsoon UTLS from the airborne limb imager GLORIA during StratoClim 2017. Enhancements are observed up to 16 km altitude, and PAN and C2H2 even up to 18 km. Two atmospheric models, CAMS and EMAC, reproduce the pollutant's large-scale structures but not finer structures. Convection is investigated using backward trajectories of the models ATLAS and TRACZILLA with advanced detection of convection.
Enzo Papandrea, Stefano Casadio, Elisa Castelli, Bianca Maria Dinelli, and Mario Marcello Miglietta
Atmos. Meas. Tech., 12, 6683–6693, https://doi.org/10.5194/amt-12-6683-2019, https://doi.org/10.5194/amt-12-6683-2019, 2019
Short summary
Short summary
Lee waves have been detected in clear-sky conditions over the Mediterranean Sea using the total column water vapour (TCWV) fields. The products were generated applying the Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) retrieval algorithm to the thermal infrared measurements of the Along Track Scanning Radiometer (ATSR) instrument series. A subset of the occurrences has been compared with both independent observations and model simulations.
Simone Ceccherini, Nicola Zoppetti, Bruno Carli, Ugo Cortesi, Samuele Del Bianco, and Cecilia Tirelli
Atmos. Meas. Tech., 12, 2967–2977, https://doi.org/10.5194/amt-12-2967-2019, https://doi.org/10.5194/amt-12-2967-2019, 2019
Short summary
Short summary
We have analytically calculated the expected value and the variance of the cost function that is minimized in the complete data fusion and propose a procedure that uses these quantities to constrain the values of the inconsistency covariance matrices. These matrices have to be added to the error covariance matrices of the measurements in order to fuse measurements that are inconsistent because of different vertical grids, not perfect time and space coincidence and different forward model errors.
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693–2732, https://doi.org/10.5194/amt-12-2693-2019, https://doi.org/10.5194/amt-12-2693-2019, 2019
Elisa Castelli, Enzo Papandrea, Alessio Di Roma, Bianca Maria Dinelli, Stefano Casadio, and Bojan Bojkov
Atmos. Meas. Tech., 12, 371–388, https://doi.org/10.5194/amt-12-371-2019, https://doi.org/10.5194/amt-12-371-2019, 2019
Short summary
Short summary
The total column water vapour (TCWV) is a key atmospheric variable. The AIRWAVE (Advanced Infra-Red WAter Vapour Estimator) v1 algorithm was developed to retrieve TCWV from satellite measurements. Comparisons with independent TCWV show good agreement with an overall bias of 0.72 kg m−2 due to the polar and coastal regions. Here, we describe the AIRWAVEv2 dataset, which shows significant improvements with a global bias of 0.02 kg m−2. This dataset was used to produce a climatology from 1991 to 2012.
Norbert Glatthor, Thomas von Clarmann, Gabriele P. Stiller, Michael Kiefer, Alexandra Laeng, Bianca M. Dinelli, Gerald Wetzel, and Johannes Orphal
Atmos. Meas. Tech., 11, 4707–4723, https://doi.org/10.5194/amt-11-4707-2018, https://doi.org/10.5194/amt-11-4707-2018, 2018
Short summary
Short summary
We report differences in ozone retrievals in channels A and AB of the space-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which amount to up to 8 %. We provide strong evidence that the bias is caused by inconsistencies in different spectroscopic databases (MIPAS, HITRAN, GEISA). We show that a major part of the differences can be attributed to inconsistent air-broadening coefficients of the ozone lines contained in the databases.
Farahnaz Khosrawi, Stefan Lossow, Gabriele P. Stiller, Karen H. Rosenlof, Joachim Urban, John P. Burrows, Robert P. Damadeo, Patrick Eriksson, Maya García-Comas, John C. Gille, Yasuko Kasai, Michael Kiefer, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Alexei Rozanov, Christopher E. Sioris, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 11, 4435–4463, https://doi.org/10.5194/amt-11-4435-2018, https://doi.org/10.5194/amt-11-4435-2018, 2018
Short summary
Short summary
Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 satellite instruments were compared in the framework of the second SPARC water vapour assessment. We find that most data sets can be considered in observational and modelling studies addressing, e.g. stratospheric and lower mesospheric water vapour variability and trends if data-set-specific characteristics (e.g. a drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
Simone Ceccherini, Bruno Carli, Cecilia Tirelli, Nicola Zoppetti, Samuele Del Bianco, Ugo Cortesi, Jukka Kujanpää, and Rossana Dragani
Atmos. Meas. Tech., 11, 1009–1017, https://doi.org/10.5194/amt-11-1009-2018, https://doi.org/10.5194/amt-11-1009-2018, 2018
Short summary
Short summary
Data fusion is an important tool to reduce data volume and to improve data quality.
This paper introduces a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors.
This upgraded algorithm extends the applicability of the technique to a wider range of cases. In fact, it also makes it possible to fuse vertical profiles of atmospheric parameters when they are represented on different altitude grids and refer to different true profiles.
Gerald Wetzel, Hermann Oelhaf, Michael Höpfner, Felix Friedl-Vallon, Andreas Ebersoldt, Thomas Gulde, Sebastian Kazarski, Oliver Kirner, Anne Kleinert, Guido Maucher, Hans Nordmeyer, Johannes Orphal, Roland Ruhnke, and Björn-Martin Sinnhuber
Atmos. Chem. Phys., 17, 14631–14643, https://doi.org/10.5194/acp-17-14631-2017, https://doi.org/10.5194/acp-17-14631-2017, 2017
Short summary
Short summary
We report the first stratospheric measurements of the diurnal variation in the inorganic bromine (Bry) reservoir species BrONO2 around sunrise and sunset. The main goal of these observations was to check the current understanding of stratospheric bromine chemistry and to estimate the amount of lower-stratospheric Bry. The calculated temporal variation in BrONO2 largely reproduces the balloon-borne observations. The amount of Bry was estimated to be about 21–25 pptv in the lower stratosphere.
Gerald E. Nedoluha, Michael Kiefer, Stefan Lossow, R. Michael Gomez, Niklaus Kämpfer, Martin Lainer, Peter Forkman, Ole Martin Christensen, Jung Jin Oh, Paul Hartogh, John Anderson, Klaus Bramstedt, Bianca M. Dinelli, Maya Garcia-Comas, Mark Hervig, Donal Murtagh, Piera Raspollini, William G. Read, Karen Rosenlof, Gabriele P. Stiller, and Kaley A. Walker
Atmos. Chem. Phys., 17, 14543–14558, https://doi.org/10.5194/acp-17-14543-2017, https://doi.org/10.5194/acp-17-14543-2017, 2017
Short summary
Short summary
As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. In the lower mesosphere, we quantify instrumental differences in the observed trends and annual variations at six sites. We then present a range of observed trends in water vapor over the past 20 years.
Kevin S. Olsen, Kimberly Strong, Kaley A. Walker, Chris D. Boone, Piera Raspollini, Johannes Plieninger, Whitney Bader, Stephanie Conway, Michel Grutter, James W. Hannigan, Frank Hase, Nicholas Jones, Martine de Mazière, Justus Notholt, Matthias Schneider, Dan Smale, Ralf Sussmann, and Naoko Saitoh
Atmos. Meas. Tech., 10, 3697–3718, https://doi.org/10.5194/amt-10-3697-2017, https://doi.org/10.5194/amt-10-3697-2017, 2017
Short summary
Short summary
The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS has a thermal infrared channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios in the troposphere. We compare the retrieved vertical profiles of CH4 from TANSO-FTS with those from two other spaceborne FTSs and with ground-based FTS observatories to assess their quality.
Massimo Valeri, Flavio Barbara, Chris Boone, Simone Ceccherini, Marco Gai, Guido Maucher, Piera Raspollini, Marco Ridolfi, Luca Sgheri, Gerald Wetzel, and Nicola Zoppetti
Atmos. Chem. Phys., 17, 10143–10162, https://doi.org/10.5194/acp-17-10143-2017, https://doi.org/10.5194/acp-17-10143-2017, 2017
Short summary
Short summary
Atmospheric emissions of CCl4 are regulated by the Montreal Protocol due to its role as a strong ozone-depleting substance. The molecule is the subject of recent increased interest as a consequence of the discrepancy between atmospheric observations and reported production and consumption. We use MIPAS/ENVISAT data (2002–2012) to estimate CCl4 trends and lifetime. At 50 hPa we find a decline of about 30–35 % per decade. In the lower stratosphere our lifetime estimate is 47 (39–61) years.
Ellen Eckert, Thomas von Clarmann, Alexandra Laeng, Gabriele P. Stiller, Bernd Funke, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Arne Babenhauserheide, Gerald Wetzel, Christopher Boone, Andreas Engel, Jeremy J. Harrison, Patrick E. Sheese, Kaley A. Walker, and Peter F. Bernath
Atmos. Meas. Tech., 10, 2727–2743, https://doi.org/10.5194/amt-10-2727-2017, https://doi.org/10.5194/amt-10-2727-2017, 2017
Short summary
Short summary
We retrieved vertical profiles of CCl4 from MIPAS Envisat IMK/IAA data. A detailed description of all characteristics is included in the paper as well as comparisons with historical measurements and comparisons with collocated measurements of instruments covering the same time span as MIPAS Envisat. A particular focus also lies on the usage of a new CCl4 spectroscopic dataset introduced recently, which leads to more realistic CCl4 volume mixing ratios.
Alexandra Laeng, Thomas von Clarmann, Gabriele Stiller, Bianca Maria Dinelli, Anu Dudhia, Piera Raspollini, Norbert Glatthor, Udo Grabowski, Viktoria Sofieva, Lucien Froidevaux, Kaley A. Walker, and Claus Zehner
Atmos. Meas. Tech., 10, 1511–1518, https://doi.org/10.5194/amt-10-1511-2017, https://doi.org/10.5194/amt-10-1511-2017, 2017
Short summary
Short summary
A MIPAS instrument was flown in 2002–2012 on the Envisat satellite and measured atmospheric composition. There exist four processors retrieving atmospheric profiles from MIPAS spectra. We performed a mathematically clean merging of 2007–2008 datasets of ozone from these four processors. The merged product was compared with ozone datasets from ACE-FTS and MLS instruments. The advantages and the shortcomings of this merged product are discussed.
Stefan Lossow, Farahnaz Khosrawi, Gerald E. Nedoluha, Faiza Azam, Klaus Bramstedt, John. P. Burrows, Bianca M. Dinelli, Patrick Eriksson, Patrick J. Espy, Maya García-Comas, John C. Gille, Michael Kiefer, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Gabriele P. Stiller, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, https://doi.org/10.5194/amt-10-1111-2017, 2017
Quentin Errera, Simone Ceccherini, Yves Christophe, Simon Chabrillat, Michaela I. Hegglin, Alyn Lambert, Richard Ménard, Piera Raspollini, Sergey Skachko, Michiel van Weele, and Kaley A. Walker
Atmos. Meas. Tech., 9, 5895–5909, https://doi.org/10.5194/amt-9-5895-2016, https://doi.org/10.5194/amt-9-5895-2016, 2016
Short summary
Short summary
When this study started, its goal was to provide a reanalysis of the stratospheric composition of methane and nitrous oxide, two important sources of hydrogen and nitrogen species in the stratosphere that influence the ozone abundance. However, the goal changed when several issues in the assimilated observations were discovered. Finally, this study illustrates how data assimilation methods can be used to add value to the observations as well as to diagnose their limitations.
Massimo Carlotti, Bianca Maria Dinelli, Giada Innocenti, and Luca Palchetti
Atmos. Meas. Tech., 9, 5853–5867, https://doi.org/10.5194/amt-9-5853-2016, https://doi.org/10.5194/amt-9-5853-2016, 2016
Short summary
Short summary
We introduce a strategy for the measurement of CO2 in the stratosphere. We use an orbiting limb sounder to measure both the thermal infrared (TIR) and far-infrared (FIR) atmospheric emissions. The rotational transitions of O2 in the FIR are exploited to derive the temperature and pressure fields that are needed to retrieve the CO2 from its spectrum in the TIR. The proposed experiment can determine two-dimensional distributions of the CO2 with precision of 1 ppm at altitudes between 10 and 50 km.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Chris A. McLinden, Peter F. Bernath, Adam E. Bourassa, John P. Burrows, Doug A. Degenstein, Bernd Funke, Didier Fussen, Gloria L. Manney, C. Thomas McElroy, Donal Murtagh, Cora E. Randall, Piera Raspollini, Alexei Rozanov, James M. Russell III, Makoto Suzuki, Masato Shiotani, Joachim Urban, Thomas von Clarmann, and Joseph M. Zawodny
Atmos. Meas. Tech., 9, 5781–5810, https://doi.org/10.5194/amt-9-5781-2016, https://doi.org/10.5194/amt-9-5781-2016, 2016
Short summary
Short summary
This study validates version 3.5 of the ACE-FTS NOy species data sets by comparing diurnally scaled ACE-FTS data to correlative data from 11 other satellite limb sounders. For all five species examined (NO, NO2, HNO3, N2O5, and ClONO2), there is good agreement between ACE-FTS and the other data sets in various regions of the atmosphere. In these validated regions, these NOy data products can be used for further investigation into the composition, dynamics, and climate of the stratosphere.
Elisa Castelli, Marco Ridolfi, Massimo Carlotti, Björn-Martin Sinnhuber, Oliver Kirner, Michael Kiefer, and Bianca Maria Dinelli
Atmos. Meas. Tech., 9, 5499–5508, https://doi.org/10.5194/amt-9-5499-2016, https://doi.org/10.5194/amt-9-5499-2016, 2016
Short summary
Short summary
MIPAS is a satellite-borne limb emission sounder. The algorithm used to infer atmospheric composition from its measurements exploits the assumption that the atmosphere is horizontally homogeneous. This assumption can cause significant errors. We use synthetic observations to quantify these errors. Furthermore we show that the inclusion of any kind of horizontal variability model improves all the retrieval targets and that the two-dimensional approach implies the smallest errors.
Michael Höpfner, Rainer Volkamer, Udo Grabowski, Michel Grutter, Johannes Orphal, Gabriele Stiller, Thomas von Clarmann, and Gerald Wetzel
Atmos. Chem. Phys., 16, 14357–14369, https://doi.org/10.5194/acp-16-14357-2016, https://doi.org/10.5194/acp-16-14357-2016, 2016
Short summary
Short summary
Ammonia (NH3) in the atmosphere is important because of its influence on aerosol and cloud formation and its increasing anthropogenic emissions. We report the first detection of NH3 in the upper troposphere by the analysis of infrared limb emission spectra measured by the MIPAS instrument on Envisat. We have found enhanced values of NH3 within the Asian summer monsoon upper troposphere, where it might contribute to the composition of the Asian tropopause aerosol layer.
Massimo Valeri, Massimo Carlotti, Jean-Marie Flaud, Piera Raspollini, Marco Ridolfi, and Bianca Maria Dinelli
Atmos. Meas. Tech., 9, 4655–4663, https://doi.org/10.5194/amt-9-4655-2016, https://doi.org/10.5194/amt-9-4655-2016, 2016
Short summary
Short summary
Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements have been analysed to measure the vertical distribution of phosgene (COCl2) in the UTLS using new spectroscopic data. To highlight its seasonal and latitudinal variability, MIPAS measurements of 2 days/month during 2008 have been analysed. The results show a strong latitudinal variability of COCl2 with the largest VMR values observed in the tropical regions. The seasonality is fairly low, apart from the polar regions.
E. Eckert, A. Laeng, S. Lossow, S. Kellmann, G. Stiller, T. von Clarmann, N. Glatthor, M. Höpfner, M. Kiefer, H. Oelhaf, J. Orphal, B. Funke, U. Grabowski, F. Haenel, A. Linden, G. Wetzel, W. Woiwode, P. F. Bernath, C. Boone, G. S. Dutton, J. W. Elkins, A. Engel, J. C. Gille, F. Kolonjari, T. Sugita, G. C. Toon, and K. A. Walker
Atmos. Meas. Tech., 9, 3355–3389, https://doi.org/10.5194/amt-9-3355-2016, https://doi.org/10.5194/amt-9-3355-2016, 2016
Short summary
Short summary
We investigate the accuracy, precision and long-term stability of the MIPAS Envisat IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) products.
For comparisons we use several data products from satellite, airplane and balloon-borne instruments as well as ground-based data.
MIPAS Envisat CFC-11 has a slight high bias at the lower end of the profile.
CFC-12 agrees well with other data products.
The temporal stability is good up to ~ 30 km, but still leaves room for improvement.
Ugo Cortesi, Samuele Del Bianco, Simone Ceccherini, Marco Gai, Bianca Maria Dinelli, Elisa Castelli, Hermann Oelhaf, Wolfgang Woiwode, Michael Höpfner, and Daniel Gerber
Atmos. Meas. Tech., 9, 2267–2289, https://doi.org/10.5194/amt-9-2267-2016, https://doi.org/10.5194/amt-9-2267-2016, 2016
Agnès Perrin, Jean-Marie Flaud, Marco Ridolfi, Jean Vander Auwera, and Massimo Carlotti
Atmos. Meas. Tech., 9, 2067–2076, https://doi.org/10.5194/amt-9-2067-2016, https://doi.org/10.5194/amt-9-2067-2016, 2016
Short summary
Short summary
Improved line positions and intensities have been generated for the 7.6 µm spectral region of nitric acid, relying on a recent laboratory reinvestigation and comparisons of HNO3 volume mixing ratios retrieved from Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) radiances in the 11 and 7.6 µm regions. The much improved consistency of line intensities in both regions will make it possible to use them simultaneously to retrieve atmospheric HNO3.
G. Wetzel, H. Oelhaf, M. Birk, A. de Lange, A. Engel, F. Friedl-Vallon, O. Kirner, A. Kleinert, G. Maucher, H. Nordmeyer, J. Orphal, R. Ruhnke, B.-M. Sinnhuber, and P. Vogt
Atmos. Chem. Phys., 15, 8065–8076, https://doi.org/10.5194/acp-15-8065-2015, https://doi.org/10.5194/acp-15-8065-2015, 2015
L. Di Liberto, R. Lehmann, I. Tritscher, F. Fierli, J. L. Mercer, M. Snels, G. Di Donfrancesco, T. Deshler, B. P. Luo, J-U. Grooß, E. Arnone, B. M. Dinelli, and F. Cairo
Atmos. Chem. Phys., 15, 6651–6665, https://doi.org/10.5194/acp-15-6651-2015, https://doi.org/10.5194/acp-15-6651-2015, 2015
Short summary
Short summary
We investigated chemical and microphysical processes in the late winter Antarctic stratosphere, for the first time (to our knowledge) coupling a detailed microphysical box model to a chemistry model.
Model results have been compared with in situ and remote sensing measurements of particles along trajectories.
Our goal is to contribute to the most recent discussion of the relative role of PSC and liquid (background) aerosol in the ozone depletion.
M. Ridolfi and L. Sgheri
Atmos. Meas. Tech., 7, 4117–4122, https://doi.org/10.5194/amt-7-4117-2014, https://doi.org/10.5194/amt-7-4117-2014, 2014
Short summary
Short summary
In this paper, we review the main factors driving the calculation of the tangent height of spaceborne limb measurements: the ray-tracing method, the refractive index model and the assumed atmosphere. We find that commonly used ray-tracing and refraction models are very accurate, at least in the mid-infrared. The factor with the largest effect in the tangent height calculation is the assumed atmosphere, which may cause errors of up to 200m.
L. Kritten, A. Butz, M. P. Chipperfield, M. Dorf, S. Dhomse, R. Hossaini, H. Oelhaf, C. Prados-Roman, G. Wetzel, and K. Pfeilsticker
Atmos. Chem. Phys., 14, 9555–9566, https://doi.org/10.5194/acp-14-9555-2014, https://doi.org/10.5194/acp-14-9555-2014, 2014
B. Hassler, I. Petropavlovskikh, J. Staehelin, T. August, P. K. Bhartia, C. Clerbaux, D. Degenstein, M. De Mazière, B. M. Dinelli, A. Dudhia, G. Dufour, S. M. Frith, L. Froidevaux, S. Godin-Beekmann, J. Granville, N. R. P. Harris, K. Hoppel, D. Hubert, Y. Kasai, M. J. Kurylo, E. Kyrölä, J.-C. Lambert, P. F. Levelt, C. T. McElroy, R. D. McPeters, R. Munro, H. Nakajima, A. Parrish, P. Raspollini, E. E. Remsberg, K. H. Rosenlof, A. Rozanov, T. Sano, Y. Sasano, M. Shiotani, H. G. J. Smit, G. Stiller, J. Tamminen, D. W. Tarasick, J. Urban, R. J. van der A, J. P. Veefkind, C. Vigouroux, T. von Clarmann, C. von Savigny, K. A. Walker, M. Weber, J. Wild, and J. M. Zawodny
Atmos. Meas. Tech., 7, 1395–1427, https://doi.org/10.5194/amt-7-1395-2014, https://doi.org/10.5194/amt-7-1395-2014, 2014
H. Sagawa, T. O. Sato, P. Baron, E. Dupuy, N. Livesey, J. Urban, T. von Clarmann, A. de Lange, G. Wetzel, B. J. Connor, A. Kagawa, D. Murtagh, and Y. Kasai
Atmos. Meas. Tech., 6, 3325–3347, https://doi.org/10.5194/amt-6-3325-2013, https://doi.org/10.5194/amt-6-3325-2013, 2013
E. Castelli, B. M. Dinelli, S. Del Bianco, D. Gerber, B. P. Moyna, R. Siddans, B. J. Kerridge, and U. Cortesi
Atmos. Meas. Tech., 6, 2683–2701, https://doi.org/10.5194/amt-6-2683-2013, https://doi.org/10.5194/amt-6-2683-2013, 2013
P. Raspollini, B. Carli, M. Carlotti, S. Ceccherini, A. Dehn, B. M. Dinelli, A. Dudhia, J.-M. Flaud, M. López-Puertas, F. Niro, J. J. Remedios, M. Ridolfi, H. Sembhi, L. Sgheri, and T. von Clarmann
Atmos. Meas. Tech., 6, 2419–2439, https://doi.org/10.5194/amt-6-2419-2013, https://doi.org/10.5194/amt-6-2419-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
G. Wetzel, H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang
Atmos. Chem. Phys., 13, 5791–5811, https://doi.org/10.5194/acp-13-5791-2013, https://doi.org/10.5194/acp-13-5791-2013, 2013
M. Carlotti, E. Arnone, E. Castelli, B. M. Dinelli, and E. Papandrea
Atmos. Meas. Tech., 6, 419–429, https://doi.org/10.5194/amt-6-419-2013, https://doi.org/10.5194/amt-6-419-2013, 2013
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Impact of instrumental line shape characterization on ozone monitoring by FTIR spectrometry
Synergetic use of IASI profile and TROPOMI total-column level 2 methane retrieval products
Comment on “Synergetic use of IASI profile and TROPOMI total-column level 2 methane retrieval products” by Schneider et al. (2022)
An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations
Ozone Monitoring Instrument (OMI) collection 4: establishing a 17-year-long series of detrended level-1b data
Impact of 3D cloud structures on the atmospheric trace gas products from UV–Vis sounders – Part 3: Bias estimate using synthetic and observational data
Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm
Synergy of Using Nadir and Limb Instruments for Tropospheric Ozone Monitoring (SUNLIT)
DARCLOS: a cloud shadow detection algorithm for TROPOMI
Improved retrieval of SO2 plume height from TROPOMI using an iterative Covariance-Based Retrieval Algorithm
Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements
Improved ozone monitoring by ground-based FTIR spectrometry
On the consistency of methane retrievals using the Total Carbon Column Observing Network (TCCON) and multiple spectroscopic databases
The MOPITT Version 9 CO product: sampling enhancements and validation
Retrieving H2O/HDO columns over cloudy and clear-sky scenes from the Tropospheric Monitoring Instrument (TROPOMI)
Sentinel-5P TROPOMI NO2 retrieval: impact of version v2.2 improvements and comparisons with OMI and ground-based data
Level 2 processor and auxiliary data for ESA Version 8 final full mission analysis of MIPAS measurements on ENVISAT
Optimized Umkehr profile algorithm for ozone trend analyses
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
Mapping the spatial distribution of NO2 with in situ and remote sensing instruments during the Munich NO2 imaging campaign
Improved monitoring of shipping NO2 with TROPOMI: decreasing NOx emissions in European seas during the COVID-19 pandemic
Complementing XCO2 imagery with ground-based CO2 and 14CO2 measurements to monitor CO2 emissions from fossil fuels on a regional to local scale
Simulated multispectral temperature and atmospheric composition retrievals for the JPL GEO-IR Sounder
Truth and uncertainty. A critical discussion of the error concept versus the uncertainty concept
Calculating the vertical column density of O4 during daytime from surface values of pressure, temperature, and relative humidity
Automated detection of atmospheric NO2 plumes from satellite data: a tool to help infer anthropogenic combustion emissions
The FORUM end-to-end simulator project: architecture and results
New sampling strategy mitigates a solar-geometry-induced bias in sub-kilometre vapour scaling statistics derived from imaging spectroscopy
Remote sensing of methane plumes: instrument tradeoff analysis for detecting and quantifying local sources at global scale
The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22
Glyoxal tropospheric column retrievals from TROPOMI – multi-satellite intercomparison and ground-based validation
Retrieval algorithm for OClO from TROPOMI (TROPOspheric Monitoring Instrument) by differential optical absorption spectroscopy
Tracking aerosols and SO2 clouds from the Raikoke eruption: 3D view from satellite observations
A minimum curvature algorithm for tomographic reconstruction of atmospheric chemicals based on optical remote sensing
An improved TROPOMI tropospheric NO2 research product over Europe
Neural-network-based estimation of regional-scale anthropogenic CO2 emissions using an Orbiting Carbon Observatory-2 (OCO-2) dataset over East and West Asia
Are elevated moist layers a blind spot for hyperspectral infrared sounders? A model study
On the potential of a neural network-based approach for estimating XCO2 from OCO-2 measurements
The Space CARBon Observatory (SCARBO) concept: Assessment of XCO2 and XCH4 retrieval performance
GFIT3: a full physics retrieval algorithm for remote sensing of greenhouse gases in the presence of aerosols
Impact of 3D radiative transfer on airborne NO2 imaging remote sensing over cities with buildings
A global ozone profile climatology for satellite retrieval algorithms based on Aura MLS measurements and the MERRA-2 GMI simulation
Tropospheric and stratospheric NO retrieved from ground-based Fourier-transform infrared (FTIR) measurements
Ozone profile retrieval from nadir TROPOMI measurements in the UV range
First ground-based Fourier transform infrared (FTIR) spectrometer observations of HFC-23 at Rikubetsu, Japan, and Syowa Station, Antarctica
Improvement of Odin/SMR water vapour and temperature measurements and validation of the obtained data sets
Estimation of ship emission rates at a major shipping lane by long-path DOAS measurements
Total ozone column from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) measurements using the broadband weighting function fitting approach (WFFA)
A simulation-experiment-based assessment of retrievals of above-cloud temperature and water vapor using a hyperspectral infrared sounder
Reduced-cost construction of Jacobian matrices for high-resolution inversions of satellite observations of atmospheric composition
Omaira E. García, Esther Sanromá, Frank Hase, Matthias Schneider, Sergio Fabián León-Luis, Thomas Blumenstock, Eliezer Sepúlveda, Carlos Torres, Natalia Prats, Alberto Redondas, and Virgilio Carreño
Atmos. Meas. Tech., 15, 4547–4567, https://doi.org/10.5194/amt-15-4547-2022, https://doi.org/10.5194/amt-15-4547-2022, 2022
Short summary
Short summary
Retrieving high-precision concentrations of atmospheric trace gases from FTIR (Fourier transform infrared) spectrometry requires a precise knowledge of the instrumental performance. In this context, this paper examines the impact on the ozone (O3) retrievals of several approaches used to characterise the instrumental line shape (ILS) function of ground-based FTIR spectrometers within NDACC (Network for the Detection of Atmospheric Composition Change).
Matthias Schneider, Benjamin Ertl, Qiansi Tu, Christopher J. Diekmann, Farahnaz Khosrawi, Amelie N. Röhling, Frank Hase, Darko Dubravica, Omaira E. García, Eliezer Sepúlveda, Tobias Borsdorff, Jochen Landgraf, Alba Lorente, André Butz, Huilin Chen, Rigel Kivi, Thomas Laemmel, Michel Ramonet, Cyril Crevoisier, Jérome Pernin, Martin Steinbacher, Frank Meinhardt, Kimberly Strong, Debra Wunch, Thorsten Warneke, Coleen Roehl, Paul O. Wennberg, Isamu Morino, Laura T. Iraci, Kei Shiomi, Nicholas M. Deutscher, David W. T. Griffith, Voltaire A. Velazco, and David F. Pollard
Atmos. Meas. Tech., 15, 4339–4371, https://doi.org/10.5194/amt-15-4339-2022, https://doi.org/10.5194/amt-15-4339-2022, 2022
Short summary
Short summary
We present a computationally very efficient method for the synergetic use of level 2 remote-sensing data products. We apply the method to IASI vertical profile and TROPOMI total column space-borne methane observations and thus gain sensitivity for the tropospheric methane partial columns, which is not achievable by the individual use of TROPOMI and IASI. These synergetic effects are evaluated theoretically and empirically by inter-comparisons to independent references of TCCON, AirCore, and GAW.
Simone Ceccherini
Atmos. Meas. Tech., 15, 4407–4410, https://doi.org/10.5194/amt-15-4407-2022, https://doi.org/10.5194/amt-15-4407-2022, 2022
Short summary
Short summary
The equivalence between the data fusion performed using the Kalman filter and the Complete Data Fusion has been proved, and a generalization of the Complete Data Fusion formula, that is valid also in the case that the noise error covariance matrices of the fused products are singular, is derived. The two methods are also equivalent to the measurement–space–solution data fusion method, and for moderately nonlinear problems, the three methods are all equivalent to the simultaneous retrieval.
Kang Sun, Mahdi Yousefi, Christopher Chan Miller, Kelly Chance, Gonzalo González Abad, Iouli E. Gordon, Xiong Liu, Ewan O'Sullivan, Christopher E. Sioris, and Steven C. Wofsy
Atmos. Meas. Tech., 15, 3721–3745, https://doi.org/10.5194/amt-15-3721-2022, https://doi.org/10.5194/amt-15-3721-2022, 2022
Short summary
Short summary
This study of upper atmospheric airglow from oxygen is motivated by the need to measure oxygen simultaneously with methane and CO2 in satellite remote sensing. We provide an accurate understanding of the spatial, temporal, and spectral distribution of airglow emissions, which will help in the satellite remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.
Quintus Kleipool, Nico Rozemeijer, Mirna van Hoek, Jonatan Leloux, Erwin Loots, Antje Ludewig, Emiel van der Plas, Daley Adrichem, Raoul Harel, Simon Spronk, Mark ter Linden, Glen Jaross, David Haffner, Pepijn Veefkind, and Pieternel F. Levelt
Atmos. Meas. Tech., 15, 3527–3553, https://doi.org/10.5194/amt-15-3527-2022, https://doi.org/10.5194/amt-15-3527-2022, 2022
Short summary
Short summary
A new collection-4 dataset for the Ozone Monitoring Instrument (OMI) mission has been established to supersede the current collection-3 level-1b (L1b) data, produced with a newly developed L01b data processor based on the TROPOspheric Monitoring Instrument (TROPOMI) L01b processor. The collection-4 L1b data have a similar output format to the TROPOMI L1b data for easy connection of the data series. Many insights from the TROPOMI algorithms, as well as from OMI collection-3 usage, were included.
Arve Kylling, Claudia Emde, Huan Yu, Michel van Roozendael, Kerstin Stebel, Ben Veihelmann, and Bernhard Mayer
Atmos. Meas. Tech., 15, 3481–3495, https://doi.org/10.5194/amt-15-3481-2022, https://doi.org/10.5194/amt-15-3481-2022, 2022
Short summary
Short summary
Atmospheric trace gases such as nitrogen dioxide (NO2) may be measured by satellite instruments sensitive to solar ultraviolet–visible radiation reflected from Earth and its atmosphere. For a single pixel, clouds in neighbouring pixels may affect the radiation and hence the retrieved trace gas amount. We found that for a solar zenith angle less than about 40° this cloud-related NO2 bias is typically below 10 %, while for larger solar zenith angles the NO2 bias is on the order of tens of percent.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Oliver Schneising, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Robert J. Parker, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Markus Rettinger, Coleen Roehl, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, and Thorsten Warneke
Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, https://doi.org/10.5194/amt-15-3401-2022, 2022
Short summary
Short summary
We present a new version (v3) of the GOSAT and GOSAT-2 FOCAL products.
In addition to an increased number of XCO2 data, v3 also includes products for XCH4 (full-physics and proxy), XH2O and the relative ratio of HDO to H2O (δD). For GOSAT-2, we also present first XCO and XN2O results. All FOCAL data products show reasonable spatial distribution and temporal variations and agree well with TCCON. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb.
Viktoria F. Sofieva, Risto Hänninen, Mikhail Sofiev, Monika Szeląg, Hei Shing Lee, Johanna Tamminen, and Christian Retscher
Atmos. Meas. Tech., 15, 3193–3212, https://doi.org/10.5194/amt-15-3193-2022, https://doi.org/10.5194/amt-15-3193-2022, 2022
Short summary
Short summary
We present tropospheric ozone column datasets that have been created using combinations of total ozone column from OMI and TROPOMI with stratospheric ozone column datasets from several available limb-viewing instruments (MLS, OSIRIS, MIPAS, SCIAMACHY, OMPS-LP, GOMOS). The main results are (i) several methodological developments, (ii) new tropospheric ozone column datasets from OMI and TROPOMI, and (iii) a new high-resolution dataset of ozone profiles from limb satellite instruments.
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 15, 3121–3140, https://doi.org/10.5194/amt-15-3121-2022, https://doi.org/10.5194/amt-15-3121-2022, 2022
Short summary
Short summary
Cloud shadows are observed by the TROPOMI satellite instrument as a result of its high spatial resolution. These shadows contaminate TROPOMI's air quality measurements, because shadows are generally not taken into account in the models that are used for aerosol and trace gas retrievals. We present the Detection AlgoRithm for CLOud Shadows (DARCLOS) for TROPOMI, which is the first cloud shadow detection algorithm for a satellite spectrometer.
Nicolas Theys, Christophe Lerot, Hugues Brenot, Jeroen van Gent, Isabelle De Smedt, Lieven Clarisse, Mike Burton, Matthew Varnam, and Michel Van Roozendael
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-148, https://doi.org/10.5194/amt-2022-148, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Sulfur dioxide plume height after a volcanic eruption is an important information for many different scientific studies and applications. Satellite UV retrievals are useful in this respect but available algorithms have shown so far limited sensitivity to SO2 height. Here we present a new technique to improve the retrieval of SO2 plume height for SO2 columns as low as 5 DU. We demonstrate the algorithm using TROPOMI measurements and compare with other height estimates.
Nora Mettig, Mark Weber, Alexei Rozanov, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Ryan M. Stauffer, Thierry Leblanc, Gerard Ancellet, Michael J. Newchurch, Shi Kuang, Rigel Kivi, Matthew B. Tully, Roeland Van Malderen, Ankie Piters, Bogumil Kois, René Stübi, and Pavla Skrivankova
Atmos. Meas. Tech., 15, 2955–2978, https://doi.org/10.5194/amt-15-2955-2022, https://doi.org/10.5194/amt-15-2955-2022, 2022
Short summary
Short summary
Vertical ozone profiles from combined spectral measurements in the UV and IR spectral ranges were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP. The vertical resolution and accuracy of the ozone profiles are improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The advancement of our TOPAS algorithm for combined measurements is required because in the UV-only retrieval the vertical resolution in the troposphere is very limited.
Omaira Elena García, Esther Sanromá, Matthias Schneider, Frank Hase, Sergio Fabián León-Luis, Thomas Blumenstock, Eliezer Sepúlveda, Alberto Redondas, Virgilio Carreño, Carlos Torres, and Natalia Prats
Atmos. Meas. Tech., 15, 2557–2577, https://doi.org/10.5194/amt-15-2557-2022, https://doi.org/10.5194/amt-15-2557-2022, 2022
Short summary
Short summary
Accurate observations of atmospheric ozone (O3) are essential to monitor in detail its key role in atmospheric chemistry. In this context, this paper has assessed the effect of using different retrieval strategies on the quality of O3 products from ground-based NDACC FTIR (Fourier transform infrared) spectrometry, with the aim of providing an improved O3 retrieval that could be applied at any NDACC FTIR station.
Edward Malina, Ben Veihelmann, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, and Isamu Morino
Atmos. Meas. Tech., 15, 2377–2406, https://doi.org/10.5194/amt-15-2377-2022, https://doi.org/10.5194/amt-15-2377-2022, 2022
Short summary
Short summary
Methane retrievals from remote sensing instruments are fundamentally based on spectroscopic parameters, which indicate spectral-line positions, and their characteristics. These parameters are stored in several databases that vary in their make-up. Here we assess how concentrations of methane isotopologues measured from the same Total Carbon Column Observing Network (TCCON) instruments vary across a range of spectral windows using different spectroscopic databases and comment on the implications.
Merritt Deeter, Gene Francis, John Gille, Debbie Mao, Sara Martínez-Alonso, Helen Worden, Dan Ziskin, James Drummond, Róisín Commane, Glenn Diskin, and Kathryn McKain
Atmos. Meas. Tech., 15, 2325–2344, https://doi.org/10.5194/amt-15-2325-2022, https://doi.org/10.5194/amt-15-2325-2022, 2022
Short summary
Short summary
The MOPITT (Measurements of Pollution in the Troposphere) satellite instrument uses remote sensing to obtain retrievals (measurements) of carbon monoxide (CO) in the atmosphere. This paper describes the latest MOPITT data product, Version 9. Globally, the number of daytime MOPITT retrievals over land has increased by 30 %–40 % compared to the previous product. The reported improvements in the MOPITT product should benefit a wide variety of applications including studies of pollution sources.
Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh, Alba Lorente, Franziska Aemisegger, David Noone, Dean Henze, Rigel Kivi, and Jochen Landgraf
Atmos. Meas. Tech., 15, 2251–2275, https://doi.org/10.5194/amt-15-2251-2022, https://doi.org/10.5194/amt-15-2251-2022, 2022
Short summary
Short summary
This paper presents an extended H₂O/HDO total column dataset from short-wave infrared measurements by TROPOMI including cloudy and clear-sky scenes. Coverage is tremendously increased compared to previous TROPOMI HDO datasets. The new dataset is validated against recent ground-based FTIR measurements from TCCON and against aircraft measurements over the ocean. The use of the new dataset is demonstrated with a case study of a cold air outbreak in January 2020.
Jos van Geffen, Henk Eskes, Steven Compernolle, Gaia Pinardi, Tijl Verhoelst, Jean-Christopher Lambert, Maarten Sneep, Mark ter Linden, Antje Ludewig, K. Folkert Boersma, and J. Pepijn Veefkind
Atmos. Meas. Tech., 15, 2037–2060, https://doi.org/10.5194/amt-15-2037-2022, https://doi.org/10.5194/amt-15-2037-2022, 2022
Short summary
Short summary
Nitrogen dioxide (NO2) is one of the main data products measured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite. This study describes improvements in the TROPOMI NO2 retrieval leading to version v2.2, operational since 1 July 2021. It compares results with previous versions v1.2–v1.4 and with Ozone Monitoring Instrument (OMI) and ground-based measurements.
Piera Raspollini, Enrico Arnone, Flavio Barbara, Massimo Bianchini, Bruno Carli, Simone Ceccherini, Martyn P. Chipperfield, Angelika Dehn, Stefano Della Fera, Bianca Maria Dinelli, Anu Dudhia, Jean-Marie Flaud, Marco Gai, Michael Kiefer, Manuel López-Puertas, David P. Moore, Alessandro Piro, John J. Remedios, Marco Ridolfi, Harjinder Sembhi, Luca Sgheri, and Nicola Zoppetti
Atmos. Meas. Tech., 15, 1871–1901, https://doi.org/10.5194/amt-15-1871-2022, https://doi.org/10.5194/amt-15-1871-2022, 2022
Short summary
Short summary
The MIPAS instrument onboard the ENVISAT satellite provided 10 years of measurements of the atmospheric emission al limb that allow for the retrieval of latitude- and altitude-resolved atmospheric composition. We describe the improvements implemented in the retrieval algorithm used for the full mission reanalysis, which allows for the generation of the global distributions of 21 atmospheric constituents plus temperature with increased accuracy with respect to previously generated data.
Irina Petropavlovskikh, Koji Miyagawa, Audra McClure-Beegle, Bryan Johnson, Jeannette Wild, Susan Strahan, Krzysztof Wargan, Richard Querel, Lawrence Flynn, Eric Beach, Gerard Ancellet, and Sophie Godin-Beekmann
Atmos. Meas. Tech., 15, 1849–1870, https://doi.org/10.5194/amt-15-1849-2022, https://doi.org/10.5194/amt-15-1849-2022, 2022
Short summary
Short summary
The Montreal Protocol and its amendments assure the recovery of the stratospheric ozone layer that protects the Earth from harmful ultraviolet radiation. To monitor ozone recovery, multiple satellites and ground-based observational platforms collect ozone data. The changes in instruments can influence the continuation of the ozone data. We discuss a method to remove instrumental artifacts from ozone records to improve the internal consistency among multiple observational records.
Elena Sánchez-García, Javier Gorroño, Itziar Irakulis-Loitxate, Daniel J. Varon, and Luis Guanter
Atmos. Meas. Tech., 15, 1657–1674, https://doi.org/10.5194/amt-15-1657-2022, https://doi.org/10.5194/amt-15-1657-2022, 2022
Short summary
Short summary
This study seeks to present the as-yet-unknown potential use of WorldView-3 for the mapping of methane point source emissions. The proposed retrieval methodology is based on the idea that the spectral channels not affected by methane can be used to predict the methane-affected band through regression analysis. The results show the precise location of 26 independent point emissions over different methane hotspot regions worldwide, which prove the game-changing potential that this mission entails.
Gerrit Kuhlmann, Ka Lok Chan, Sebastian Donner, Ying Zhu, Marc Schwaerzel, Steffen Dörner, Jia Chen, Andreas Hueni, Duc Hai Nguyen, Alexander Damm, Annette Schütt, Florian Dietrich, Dominik Brunner, Cheng Liu, Brigitte Buchmann, Thomas Wagner, and Mark Wenig
Atmos. Meas. Tech., 15, 1609–1629, https://doi.org/10.5194/amt-15-1609-2022, https://doi.org/10.5194/amt-15-1609-2022, 2022
Short summary
Short summary
Nitrogen dioxide (NO2) is an air pollutant whose concentration often exceeds air quality guideline values, especially in urban areas. To map the spatial distribution of NO2 in Munich, we conducted the Munich NO2 Imaging Campaign (MuNIC), where NO2 was measured with stationary, mobile, and airborne in situ and remote sensing instruments. The campaign provides a unique dataset that has been used to compare the different instruments and to study the spatial variability of NO2 and its sources.
Tobias Christoph Valentin Werner Riess, Klaas Folkert Boersma, Jasper van Vliet, Wouter Peters, Maarten Sneep, Henk Eskes, and Jos van Geffen
Atmos. Meas. Tech., 15, 1415–1438, https://doi.org/10.5194/amt-15-1415-2022, https://doi.org/10.5194/amt-15-1415-2022, 2022
Short summary
Short summary
This paper reports on improved monitoring of ship nitrogen oxide emissions by TROPOMI. With its fantastic resolution we can identify lanes of ship nitrogen dioxide (NO2) pollution not detected from space before. The quality of TROPOMI NO2 data over sea is improved further by recent upgrades in cloud retrievals and the use of sun glint scenes. Lastly, we study the impact of COVID-19 on ship NO2 in European seas and compare the found reductions to emission estimates gained from ship-specific data.
Elise Potier, Grégoire Broquet, Yilong Wang, Diego Santaren, Antoine Berchet, Isabelle Pison, Julia Marshall, Phillipe Ciais, François-Marie Bréon, and Frédéric Chevallier
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-48, https://doi.org/10.5194/amt-2022-48, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Atmospheric inversion at local to regional scale over Europe and pseudo-data assimilation are used to evaluate how CO2 and 14CO2 ground-based measurement networks could complement satellite CO2 imagers to monitor fossil fuel (FF) CO2 emissions. This combination significantly improve precision in the FF emission estimates in areas with dense network but does not strongly support the separation of the FF from the biogenic signals or the spatio-temporal extrapolation of the satellite information.
Vijay Natraj, Ming Luo, Jean-Francois Blavier, Vivienne H. Payne, Derek J. Posselt, Stanley P. Sander, Zhao-Cheng Zeng, Jessica L. Neu, Denis Tremblay, Longtao Wu, Jacola A. Roman, Yen-Hung Wu, and Leonard I. Dorsky
Atmos. Meas. Tech., 15, 1251–1267, https://doi.org/10.5194/amt-15-1251-2022, https://doi.org/10.5194/amt-15-1251-2022, 2022
Short summary
Short summary
High-fidelity monitoring and forecast of air quality and the hydrological cycle require understanding the vertical distribution of temperature, humidity, and trace gases at high spatiotemporal resolution. We describe a new instrument concept, called the JPL GEO-IR Sounder, that would provide this information for the first time from a single instrument platform. Simulations demonstrate the benefits of combining measurements from multiple wavelengths for this purpose from geostationary orbit.
Thomas von Clarmann, Steven Compernolle, and Frank Hase
Atmos. Meas. Tech., 15, 1145–1157, https://doi.org/10.5194/amt-15-1145-2022, https://doi.org/10.5194/amt-15-1145-2022, 2022
Short summary
Short summary
Contrary to the claims put forward in
Evaluation of measurement data – Guide to the expression of uncertainty in measurementissued by the JCGM, the error concept and the uncertainty concept are the same. Arguments in favor of the contrary were found not to be compelling. Neither was any evidence presented that
errorsand
uncertaintiesdefine a different relation between the measured and true values, nor is a Bayesian concept beyond the mere subjective probability referred to.
Steffen Beirle, Christian Borger, Steffen Dörner, Vinod Kumar, and Thomas Wagner
Atmos. Meas. Tech., 15, 987–1006, https://doi.org/10.5194/amt-15-987-2022, https://doi.org/10.5194/amt-15-987-2022, 2022
Short summary
Short summary
We present a formalism that relates the vertical column density (VCD) of the oxygen collision complex O4 to surface values of temperature and pressure, based on physical laws. In addition, we propose an empirical modification which also accounts for surface relative humidity (RH). This allows for simple and quick but still accurate calculation of the O4 VCD without the need for constructing full vertical profiles, which is expected to be useful in particular for MAX-DOAS applications.
Douglas P. Finch, Paul I. Palmer, and Tianran Zhang
Atmos. Meas. Tech., 15, 721–733, https://doi.org/10.5194/amt-15-721-2022, https://doi.org/10.5194/amt-15-721-2022, 2022
Short summary
Short summary
We developed a machine learning model to detect plumes of nitrogen dioxide satellite observations over 2 years. We find over 310 000 plumes, mainly over cities, industrial regions, and areas of oil and gas production. Our model performs well in comparison to other datasets and in some cases finds emissions that are not included in other datasets. This method could be used to help locate and measure emission hotspots across the globe and help inform climate policies.
Luca Sgheri, Claudio Belotti, Maya Ben-Yami, Giovanni Bianchini, Bernardo Carnicero Dominguez, Ugo Cortesi, William Cossich, Samuele Del Bianco, Gianluca Di Natale, Tomás Guardabrazo, Dulce Lajas, Tiziano Maestri, Davide Magurno, Hilke Oetjen, Piera Raspollini, and Cristina Sgattoni
Atmos. Meas. Tech., 15, 573–604, https://doi.org/10.5194/amt-15-573-2022, https://doi.org/10.5194/amt-15-573-2022, 2022
Short summary
Short summary
The FORUM instrument will look at the Earth's atmosphere from a satellite, covering a spectral range responsible for about 95 % of the radiation lost by our planet. FORUM helps to measure the imbalance between incoming and outgoing radiation that is responsible for the increasing average temperatures on Earth. The end-to-end simulator is a chain of codes that simulates the FORUM measurement process. The goal of the project is to study how the instrument reacts to different retrieval conditions.
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 15, 117–129, https://doi.org/10.5194/amt-15-117-2022, https://doi.org/10.5194/amt-15-117-2022, 2022
Short summary
Short summary
Sunlight can pass diagonally through the atmosphere, cutting through the 3-D water vapour field in a way that
smears2-D maps of imaging spectroscopy vapour retrievals. In simulations we show how this smearing is
towardsor
away fromthe Sun, so calculating
across the solar direction allows sub-kilometre information about water vapour's spatial scaling to be calculated. This could be tested by airborne campaigns and used to obtain new information from upcoming spaceborne data products.
Siraput Jongaramrungruang, Georgios Matheou, Andrew K. Thorpe, Zhao-Cheng Zeng, and Christian Frankenberg
Atmos. Meas. Tech., 14, 7999–8017, https://doi.org/10.5194/amt-14-7999-2021, https://doi.org/10.5194/amt-14-7999-2021, 2021
Short summary
Short summary
This study shows how precision error and bias in column methane retrieval change with different instrument specifications and the impact of spectrally complex surface albedos on retrievals. We show how surface interferences can be mitigated with an optimal spectral resolution and a higher polynomial degree in a retrieval process. The findings can inform future satellite instrument designs to have robust observations capable of separating real CH4 plume enhancements from surface interferences.
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021, https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Short summary
The level-2 v8 database from the measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), aboard the European Space Agency Envisat satellite, containing atmospheric fields of pressure, temperature, and volume mixing ratio of 21 trace gases, is described in this paper. The database covers all the measurements acquired by MIPAS (from July 2002 to April 2012). The number of species included makes it of particular importance for the studies of stratospheric chemistry.
Christophe Lerot, François Hendrick, Michel Van Roozendael, Leonardo M. A. Alvarado, Andreas Richter, Isabelle De Smedt, Nicolas Theys, Jonas Vlietinck, Huan Yu, Jeroen Van Gent, Trissevgeni Stavrakou, Jean-François Müller, Pieter Valks, Diego Loyola, Hitoshi Irie, Vinod Kumar, Thomas Wagner, Stefan F. Schreier, Vinayak Sinha, Ting Wang, Pucai Wang, and Christian Retscher
Atmos. Meas. Tech., 14, 7775–7807, https://doi.org/10.5194/amt-14-7775-2021, https://doi.org/10.5194/amt-14-7775-2021, 2021
Short summary
Short summary
Global measurements of glyoxal tropospheric columns from the satellite instrument TROPOMI are presented. Such measurements can contribute to the estimation of atmospheric emissions of volatile organic compounds. This new glyoxal product has been fully characterized with a comprehensive error budget, with comparison with other satellite data sets as well as with validation based on independent ground-based remote sensing glyoxal observations.
Jānis Puķīte, Christian Borger, Steffen Dörner, Myojeong Gu, Udo Frieß, Andreas Carlos Meier, Carl-Fredrik Enell, Uwe Raffalski, Andreas Richter, and Thomas Wagner
Atmos. Meas. Tech., 14, 7595–7625, https://doi.org/10.5194/amt-14-7595-2021, https://doi.org/10.5194/amt-14-7595-2021, 2021
Short summary
Short summary
Chlorine dioxide (OClO) is used as an indicator for chlorine activation. We present a new differential optical absorption spectroscopy retrieval algorithm for OClO from measurements of TROPOMI on the Sentinel-5P satellite. To achieve a substantially improved accuracy for the weak absorber OClO, we consider several additional fit parameters accounting for various higher-order spectral effects. The retrieved OClO slant column densities are compared with ground-based zenith sky measurements.
Nick Gorkavyi, Nickolay Krotkov, Can Li, Leslie Lait, Peter Colarco, Simon Carn, Matthew DeLand, Paul Newman, Mark Schoeberl, Ghassan Taha, Omar Torres, Alexander Vasilkov, and Joanna Joiner
Atmos. Meas. Tech., 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021, https://doi.org/10.5194/amt-14-7545-2021, 2021
Short summary
Short summary
The 21 June 2019 eruption of the Raikoke volcano produced significant amounts of volcanic aerosols (sulfate and ash) and sulfur dioxide (SO2) gas that penetrated into the lower stratosphere. We showed that the amount of SO2 decreases with a characteristic period of 8–18 d and the peak of sulfate aerosol lags the initial peak of SO2 by 1.5 months. We also examined the dynamics of an unusual stratospheric coherent circular cloud of SO2 and aerosol observed from 18 July to 22 September 2019.
Sheng Li and Ke Du
Atmos. Meas. Tech., 14, 7355–7368, https://doi.org/10.5194/amt-14-7355-2021, https://doi.org/10.5194/amt-14-7355-2021, 2021
Short summary
Short summary
A new minimum curvature algorithm has been proposed for tomographic mapping of air chemicals using optical remote sensing based on the seminorms in variational interpolation. The algorithm was evaluated by using multiple test maps. It shows significant improvement compared with the nonsmoothed algorithm, requires only approximately 65 % computation time of the low third derivative algorithm, and is simple to implement by directly using high-resolution grids.
Song Liu, Pieter Valks, Gaia Pinardi, Jian Xu, Ka Lok Chan, Athina Argyrouli, Ronny Lutz, Steffen Beirle, Ehsan Khorsandi, Frank Baier, Vincent Huijnen, Alkiviadis Bais, Sebastian Donner, Steffen Dörner, Myrto Gratsea, François Hendrick, Dimitris Karagkiozidis, Kezia Lange, Ankie J. M. Piters, Julia Remmers, Andreas Richter, Michel Van Roozendael, Thomas Wagner, Mark Wenig, and Diego G. Loyola
Atmos. Meas. Tech., 14, 7297–7327, https://doi.org/10.5194/amt-14-7297-2021, https://doi.org/10.5194/amt-14-7297-2021, 2021
Short summary
Short summary
In this work, an improved tropospheric NO2 retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented with correction for the dependency of the stratospheric NO2 on the viewing geometry. The AMF calculation is implemented using improved surface albedo, a priori NO2 profiles, and cloud correction. The improved tropospheric NO2 data show good correlations with ground-based MAX-DOAS measurements.
Farhan Mustafa, Lingbing Bu, Qin Wang, Na Yao, Muhammad Shahzaman, Muhammad Bilal, Rana Waqar Aslam, and Rashid Iqbal
Atmos. Meas. Tech., 14, 7277–7290, https://doi.org/10.5194/amt-14-7277-2021, https://doi.org/10.5194/amt-14-7277-2021, 2021
Short summary
Short summary
A neural-network-based approach was suggested to estimate CO2 emissions using satellite-based net primary productivity (NPP) and XCO2 retrievals. XCO2 anomalies were calculated for each year using OCO-2 retrievals. A Generalized Regression Neural Network (GRNN) model was then built; NPP, XCO2 anomalies, and ODIAC CO2 emissions from 2015 to 2018 were used as a training dataset; and, finally, CO2 emissions were predicted for 2019 based on the NPP and XCO2 anomalies calculated for the same year.
Marc Prange, Manfred Brath, and Stefan A. Buehler
Atmos. Meas. Tech., 14, 7025–7044, https://doi.org/10.5194/amt-14-7025-2021, https://doi.org/10.5194/amt-14-7025-2021, 2021
Short summary
Short summary
We investigate the ability of the hyperspectral infrared satellite instrument IASI to resolve moist layers in the tropical free troposphere in a model framework. Previous observational results indicated major deficiencies of passive satellite instruments in resolving moist layers around the freezing level. We conduct a first systematic hyperspectral infrared retrieval analysis of such moist layers and conclude that no inherent satellite blind spot for moist layers exists.
François-Marie Bréon, Leslie David, Pierre Chatelanaz, and Frédéric Chevallier
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-313, https://doi.org/10.5194/amt-2021-313, 2021
Revised manuscript has not been submitted
Short summary
Short summary
The estimate of atmospheric CO2 from space measurement is difficult. Current methods are based on a detailed description of the atmospheric radiative transfer. These are affected by significant biases and errors, and are very computer intensive. We have proposed to use instead a neural network approach. A first attempt led to confusing results. Here we provide an interpretation for these results, and describe a new version that leads to high quality estimates.
Matthieu Dogniaux, Cyril Crevoisier, Silvère Gousset, Étienne Le Coarer, Yann Ferrec, Laurence Croizé, Lianghai Wu, Otto Hasekamp, Bojan Sic, and Laure Brooker
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-224, https://doi.org/10.5194/amt-2021-224, 2021
Revised manuscript accepted for AMT
Short summary
Short summary
The Space CARBon Observatory concept proposes a constellation of nano-satellites that would carry a miniaturized Fabry-Perot imaging interferometer named NanoCarb, and an aerosol instrument named SPEXone. In this work, we assess the performance of this concept for the retrieval of the total weighted columns of CO2 and CH4, and show the interest of adding the SPEXone aerosol instrument to improve the CO2 and CH4 column retrieval.
Zhao-Cheng Zeng, Vijay Natraj, Feng Xu, Sihe Chen, Fang-Ying Gong, Thomas J. Pongetti, Keeyoon Sung, Geoffrey Toon, Stanley P. Sander, and Yuk L. Yung
Atmos. Meas. Tech., 14, 6483–6507, https://doi.org/10.5194/amt-14-6483-2021, https://doi.org/10.5194/amt-14-6483-2021, 2021
Short summary
Short summary
Large carbon source regions such as megacities are also typically associated with heavy aerosol loading, which introduces uncertainties in the retrieval of greenhouse gases from reflected and scattered sunlight measurements. In this study, we developed a full physics algorithm to retrieve greenhouse gases in the presence of aerosols and demonstrated its performance by retrieving CO2 and CH4 columns from remote sensing measurements in the Los Angeles megacity.
Marc Schwaerzel, Dominik Brunner, Fabian Jakub, Claudia Emde, Brigitte Buchmann, Alexis Berne, and Gerrit Kuhlmann
Atmos. Meas. Tech., 14, 6469–6482, https://doi.org/10.5194/amt-14-6469-2021, https://doi.org/10.5194/amt-14-6469-2021, 2021
Short summary
Short summary
NO2 maps from airborne imaging remote sensing often appear much smoother than one would expect from high-resolution model simulations of NO2 over cities, despite the small ground-pixel size of the sensors. Our case study over Zurich, using the newly implemented building module of the MYSTIC radiative transfer solver, shows that the 3D effect can explain part of the smearing and that building shadows cause a noticeable underestimation and noise in the measured NO2 columns.
Jerald R. Ziemke, Gordon J. Labow, Natalya A. Kramarova, Richard D. McPeters, Pawan K. Bhartia, Luke D. Oman, Stacey M. Frith, and David P. Haffner
Atmos. Meas. Tech., 14, 6407–6418, https://doi.org/10.5194/amt-14-6407-2021, https://doi.org/10.5194/amt-14-6407-2021, 2021
Short summary
Short summary
Seasonal and interannual ozone profile climatologies are produced from combined MLS and MERRA-2 GMI ozone for the general public. Both climatologies extend from pole to pole at altitudes of 0–80 km (1 km spacing) for the time record from 1970 to 2018. These climatologies are important for use as a priori information in satellite ozone retrieval algorithms, as validation of other measured and model-simulated ozone, and in radiative transfer studies of the atmosphere.
Minqiang Zhou, Bavo Langerock, Corinne Vigouroux, Bart Dils, Christian Hermans, Nicolas Kumps, Weidong Nan, Jean-Marc Metzger, Emmanuel Mahieu, Ting Wang, Pucai Wang, and Martine De Mazière
Atmos. Meas. Tech., 14, 6233–6247, https://doi.org/10.5194/amt-14-6233-2021, https://doi.org/10.5194/amt-14-6233-2021, 2021
Short summary
Short summary
NO is a key active trace gas in the atmosphere, which affects the atmospheric environment and human health. In this study, we show that the tropospheric and stratospheric NO partial columns can be observed from the ground-based FTIR measurements at a polluted site (Xianghe, China), but only stratospheric NO partial columns can be observed at a background site (Maïdo, Reunion Island). The variations in the NO observed by the FTIR measurements at the two sites are analyzed and discussed.
Nora Mettig, Mark Weber, Alexei Rozanov, Carlo Arosio, John P. Burrows, Pepijn Veefkind, Anne M. Thompson, Richard Querel, Thierry Leblanc, Sophie Godin-Beekmann, Rigel Kivi, and Matthew B. Tully
Atmos. Meas. Tech., 14, 6057–6082, https://doi.org/10.5194/amt-14-6057-2021, https://doi.org/10.5194/amt-14-6057-2021, 2021
Short summary
Short summary
TROPOMI is a nadir-viewing satellite that has observed global atmospheric trace gases at unprecedented spatial resolution since 2017. The retrieval of ozone profiles with high accuracy has been demonstrated using the TOPAS (Tikhonov regularised Ozone Profile retrievAl with SCIATRAN) algorithm and applying appropriate spectral corrections to TROPOMI UV data. Ozone profiles from TROPOMI were compared to ozonesonde and lidar profiles, showing an agreement to within 5 % in the stratosphere.
Masanori Takeda, Hideaki Nakajima, Isao Murata, Tomoo Nagahama, Isamu Morino, Geoffrey C. Toon, Ray F. Weiss, Jens Mühle, Paul B. Krummel, Paul J. Fraser, and Hsiang-Jui Wang
Atmos. Meas. Tech., 14, 5955–5976, https://doi.org/10.5194/amt-14-5955-2021, https://doi.org/10.5194/amt-14-5955-2021, 2021
Short summary
Short summary
This paper presents the first observations of atmospheric HFC-23 abundances with a ground-based remote sensing technique. The increasing trend of the HFC-23 abundances analyzed by this study agrees with that derived from other existing in situ measurements. This study indicates that ground-based FTIR observation has the capability to monitor the trend of atmospheric HFC-23 and could allow for monitoring the distribution of global atmospheric HFC-23 abundances in more detail.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Bengt Rydberg, Michael Kiefer, Maya Garcia-Comas, Alyn Lambert, and Kaley A. Walker
Atmos. Meas. Tech., 14, 5823–5857, https://doi.org/10.5194/amt-14-5823-2021, https://doi.org/10.5194/amt-14-5823-2021, 2021
Short summary
Short summary
We present improved Odin/SMR mesospheric H2O concentration and temperature data sets, reprocessed assuming a bigger sideband leakage of the instrument. The validation study shows how the improved SMR data sets agree better with other instruments' observations than the old SMR version did. Given their unique time extension and geographical coverage, and H2O being a good tracer of mesospheric circulation, the new data sets are valuable for the study of dynamical processes and multi-year trends.
Kai Krause, Folkard Wittrock, Andreas Richter, Stefan Schmitt, Denis Pöhler, Andreas Weigelt, and John P. Burrows
Atmos. Meas. Tech., 14, 5791–5807, https://doi.org/10.5194/amt-14-5791-2021, https://doi.org/10.5194/amt-14-5791-2021, 2021
Short summary
Short summary
Ships are an important source of key pollutants. Usually, these are measured aboard the ship or on the coast using in situ instruments. This study shows how active optical remote sensing can be used to measure ship emissions and how to determine emission rates of individual ships out of those measurements. These emission rates are valuable input for the assessment of the influence of shipping emissions in regions close to the shipping lanes.
Andrea Orfanoz-Cheuquelaf, Alexei Rozanov, Mark Weber, Carlo Arosio, Annette Ladstätter-Weißenmayer, and John P. Burrows
Atmos. Meas. Tech., 14, 5771–5789, https://doi.org/10.5194/amt-14-5771-2021, https://doi.org/10.5194/amt-14-5771-2021, 2021
Short summary
Short summary
OMPS/NPP (2012–present) allows obtaining the tropospheric ozone column by combining ozone data from limb and nadir observations from the same instrument platform. In a first step, the retrieval of the total ozone column from the OMPS Nadir Mapper using the weighting function fitting approach (WFFA) is described here. The OMPS total ozone was compared with ground-based and other satellite measurements, showing agreement within 2.5 %.
Jing Feng, Yi Huang, and Zhipeng Qu
Atmos. Meas. Tech., 14, 5717–5734, https://doi.org/10.5194/amt-14-5717-2021, https://doi.org/10.5194/amt-14-5717-2021, 2021
Short summary
Short summary
It is challenging to measure the atmospheric conditions above convective storms. In this study, a method of retrieving thermodynamic variables above convective storms using a combination of satellite-based observations from a hyperspectral infrared sounder and active sensors is developed. We find that this method captures the spatial distributions of thermodynamic anomalies above convective clouds well. This method is potentially applicable to observations from current and future satellites.
Hannah Nesser, Daniel J. Jacob, Joannes D. Maasakkers, Tia R. Scarpelli, Melissa P. Sulprizio, Yuzhong Zhang, and Chris H. Rycroft
Atmos. Meas. Tech., 14, 5521–5534, https://doi.org/10.5194/amt-14-5521-2021, https://doi.org/10.5194/amt-14-5521-2021, 2021
Short summary
Short summary
Analytical inversions of satellite observations of atmospheric composition can improve emissions estimates and quantify errors but are computationally expensive at high resolutions. We propose two methods to decrease this cost. The methods reproduce a high-resolution inversion at a quarter of the cost. The reduced-dimension method creates a multiscale grid. The reduced-rank method solves the inversion where information content is highest.
Cited articles
Bernath, P. F.: The Atmospheric Chemistry Experiment (ACE), J. Quant. Spectrosc. Ra., 186, 3–16, https://doi.org/10.1016/j.jqsrt.2016.04.006, 2017. a
Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R., DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry Experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005. a
Bernath, P., Boone, C., Steffen, J., and Crouse, J.: Atmospheric Chemistry Experiment SciSat Level 2 Processed Data, v3.5/v3.6, Federated Research Data Repository [data set], https://doi.org/10.20383/102.0495, 2021 (data available at: http://www.ace.uwaterloo.ca/data.php, last access: 16 December 2021). a
Bris, K., Pandharpurkar, R., and Strong, K.: Mid-infrared absorption cross-sections and temperature dependence of CFC-113, J. Quant. Spectrosc. Ra., 112, 1280–1285, https://doi.org/10.1016/j.jqsrt.2011.01.023, 2011. a
Ceccherini, S. and Ridolfi, M.: Technical Note: Variance-covariance matrix and averaging kernels for the Levenberg-Marquardt solution of the retrieval of atmospheric vertical profiles, Atmos. Chem. Phys., 10, 3131–3139, https://doi.org/10.5194/acp-10-3131-2010, 2010. a
Chipperfield, M. P.: New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments, Q. J. Roy. Meteor. Soc., 132, 1179–1203, https://doi.org/10.1256/qj.05.51, 2006. a
Dinelli, B. M., Arnone, E., Brizzi, G., Carlotti, M., Castelli, E., Magnani, L., Papandrea, E., Prevedelli, M., and Ridolfi, M.: The MIPAS2D database of MIPAS/ENVISAT measurements retrieved with a multi-target 2-dimensional tomographic approach, Atmos. Meas. Tech., 3, 355–374, https://doi.org/10.5194/amt-3-355-2010, 2010. a
Dinelli, B. M., Raspollini, P., Gai, M., Sgheri, L., Ridolfi, M., Ceccherini,
S., Barbara, F., Zoppetti, N., Castelli, E., Papandrea, E., Pettinari, P.,
Dehn, A., Dudhia, A., Kiefer, M., Piro, A., Flaud, J.-M., Lopez-Puertas, M.,
Moore, D., Remedios, J., and Bianchini, M.: The ESA MIPAS/ENVISAT Level2-v8
dataset: 10 years of measurements retrieved with ORM v8.22,
Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-215, in review, 2021. a, b, c, d
Dudhia, A., L Jay, V., and D Rodgers, C.: Microwindow Selection for High-Spectral-Resolution Sounders, Appl. Optics, 41, 3665–3673, https://doi.org/10.1364/AO.41.003665, 2002. a
European Space Agency: Envisat MIPAS L2 – Temperature, Pressure and Atmospheric Constituents Profiles Product, Version 8.22, ESA [data set], https://doi.org/10.5270/EN1-c8hgqx4, 2021. a
Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an instrument for atmospheric and climate research, Atmos. Chem. Phys., 8, 2151–2188, https://doi.org/10.5194/acp-8-2151-2008, 2008. a
Fitzgerald, G.: Chemical warfare and medical response during World War I,
Am. J. Public Health, 98, 611–625, 2008. a
Fu, D., D. Boone, C., F. Bernath, P., A. Walker, K., Nassar, R., Manney, G., and D. McLeod, S.: Global phosgene observations from the Atmospheric Chemistry Experiment (ACE) mission, Geophys. Res. Lett., 34, L17815, https://doi.org/10.1029/2007GL029942, 2007. a, b
Gordon, I., Rothman, L., Hill, C., Kochanov, R., Tan, Y., Bernath, P., Birk, M., Boudon, V., Campargue, A., Chance, K., Drouin, B., Flaud, J.-M., Gamache, R., Hodges, J., Jacquemart, D., Perevalov, V., Perrin, A., Shine, K., Smith, M.-A., Tennyson, J., Toon, G., Tran, H., Tyuterev, V., Barbe, A., Császár, A., Devi, V., Furtenbacher, T., Harrison, J., Hartmann, J.-M., Jolly, A., Johnson, T., Karman, T., Kleiner, I., Kyuberis, A., Loos, J., Lyulin, O., Massie, S., Mikhailenko, S., Moazzen-Ahmadi, N., Müller, H., Naumenko, O., Nikitin, A., Polyansky, O., Rey, M., Rotger, M., Sharpe, S., Sung, K., Starikova, E., Tashkun, S., Auwera, J. V., Wagner, G., Wilzewski, J., Wcisło, P., Yu, S., and Zak, E.: The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 203, 3–69, https://doi.org/10.1016/j.jqsrt.2017.06.038, hITRAN2016 Special Issue, 2017. a, b, c, d, e
Harrison, J. J.: New and improved infrared absorption cross sections for trichlorofluoromethane (CFC-11), Atmos. Meas. Tech., 11, 5827–5836, https://doi.org/10.5194/amt-11-5827-2018, 2018. a
Harrison, J. J., Chipperfield, M. P., Hossaini, R., Boone, C. D., Dhomse, S., Feng, W., and Bernath, P. F.: Phosgene in the Upper Troposphere and Lower Stratosphere: A Marker for Product Gas Injection Due to Chlorine-Containing Very Short Lived Substances, Geophys. Res. Lett., 46, 1032–1039, https://doi.org/10.1029/2018GL079784, 2019. a, b, c, d, e, f, g, h, i, j, k
Hase, F., Wallace, L., D. McLeod, S., Harrison, J., and F. Bernath, P.: The ACE-FTS atlas of the infrared solar spectrum, J. Quant. Spectrosc. Ra., 111, 521–528, https://doi.org/10.1016/j.jqsrt.2009.10.020, 2010. a
Hegglin, M. I., Tegtmeier, S., Anderson, J., Froidevaux, L., Fuller, R., Funke, B., Jones, A., Lingenfelser, G., Lumpe, J., Pendlebury, D., Remsberg, E., Rozanov, A., Toohey, M., Urban, J., von Clarmann, T., Walker, K. A., Wang, R., and Weigel, K.: SPARC Data Initiative: Comparison of water vapor climatologies from international satellite limb sounders, J. Geophys. Res.-Atmos., 118, 11824–11846, https://doi.org/10.1002/jgrd.50752, 2013. a
Hossaini, R., Atlas, E., Dhomse, S. S., Chipperfield, M. P., Bernath, P. F., Fernando, A. M., Mühle, J., Leeson, A. A., Montzka, S. A., Feng, W., Harrison, J. J., Krummel, P., Vollmer, M. K., Reimann, S., O'Doherty, S., Young, D., Maione, M., Arduini, J., and Lunder, C. R.: Recent Trends in Stratospheric Chlorine From Very Short-Lived Substances, J. Geophys. Res.-Atmos., 124, 2318–2335, https://doi.org/10.1029/2018JD029400, 2019. a
Höpfner, M., P. Stiller, G., Kuntz, M., Clarmann von, T., Echle, G.,
Funke, B., Glatthor, N., Hase, F., Kemnitzer, H., and Zorn, S.: The Karlsruhe
optimized and precise radiative transfer algorithm. Part II. Interface to
retrieval applications, Optical Remote Sensing of the Atmosphere and Clouds, 3501, 187–195, https://doi.org/10.1117/12.317753,
1998. a
Kellmann, S., von Clarmann, T., Stiller, G. P., Eckert, E., Glatthor, N., Höpfner, M., Kiefer, M., Orphal, J., Funke, B., Grabowski, U., Linden, A., Dutton, G. S., and Elkins, J. W.: Global CFC-11 (CCl3F) and CFC-12 (CCl2F2) measurements with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS): retrieval, climatologies and trends, Atmos. Chem. Phys., 12, 11857–11875, https://doi.org/10.5194/acp-12-11857-2012, 2012. a
Kindler, T. P., Chameides, W. L., Wine, P. H., Cunnold, D. M., Alyea, F. N., and Franklin, J. A.: The fate of atmospheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl4, C2Cl4, C2HCl3, CH3CCl3, and CHCl3, J. Geophys. Res.-Atmos., 100, 1235–1251, https://doi.org/10.1029/94JD02518, 1995. a
Kleinert, A., Aubertin, G., Perron, G., Birk, M., Wagner, G., Hase, F., Nett, H., and Poulin, R.: MIPAS Level 1B algorithms overview: operational processing and characterization, Atmos. Chem. Phys., 7, 1395–1406, https://doi.org/10.5194/acp-7-1395-2007, 2007. a, b
Kleinert, A., Birk, M., Perron, G., and Wagner, G.: Level 1b error budget for MIPAS on ENVISAT, Atmos. Meas. Tech., 11, 5657–5672, https://doi.org/10.5194/amt-11-5657-2018, 2018. a, b
Koo, J.-H., Walker, K. A., Jones, A., Sheese, P. E., Boone, C. D., Bernath, P. F., and Manney, G. L.: Global climatology based on the ACE-FTS version 3.5 dataset: Addition of mesospheric levels and carbon-containing species in the UTLS, J. Quant. Spectrosc. Ra., 186, 52–62, https://doi.org/10.1016/j.jqsrt.2016.07.003, 2017. a
Mahieu, E., Chipperfield, M. P., Notholt, J., Reddmann, T., Anderson, J. J., Bernath, P. F., Blumenstock, T., Coffey, M. T., Dhomse, S. S., Feng, W., Franco, B., Froidevaux, L., Griffith, D. W. T., Hannigan, J. W., Hase, F., Hossaini, R., Jones, N. G. B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Russell, J. M., Schneider, M., Stiller, G. P., Smale, D. A., and Walker, K. A.: Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes, Nature, 515, 104–107, 2014. a
Monks, S. A., Arnold, S. R., Hollaway, M. J., Pope, R. J., Wilson, C., Feng, W., Emmerson, K. M., Kerridge, B. J., Latter, B. L., Miles, G. M., Siddans, R., and Chipperfield, M. P.: The TOMCAT global chemical transport model v1.6: description of chemical mechanism and model evaluation, Geosci. Model Dev., 10, 3025–3057, https://doi.org/10.5194/gmd-10-3025-2017, 2017. a
Naujokat, B. and Grunow, K.: The stratospheric Arctic winter 2002/03: balloon flight planning by trajectory calculations, European Space Agency, (Special Publication) ESA SP, 530, 421–425, 2003. a
Perrin, A., Flaud, J.-M., Ridolfi, M., Vander Auwera, J., and Carlotti, M.: MIPAS database: new HNO3 line parameters at
7.6 µm validated with MIPAS satellite measurements, Atmos. Meas. Tech., 9, 2067–2076, https://doi.org/10.5194/amt-9-2067-2016, 2016. a, b
Ploeger, F., Riese, M., Haenel, F., Konopka, P., Müller, R., and Stiller, G.: Variability of stratospheric mean age of air and of the local effects of residual circulation and eddy mixing, J. Geophys. Res.-Atmos., 120, 716–733, https://doi.org/10.1002/2014JD022468, 2015. a
Raspollini, P., Belotti, C., Burgess, A., Carli, B., Carlotti, M., Ceccherini, S., Dinelli, B. M., Dudhia, A., Flaud, J.-M., Funke, B., Höpfner, M., López-Puertas, M., Payne, V., Piccolo, C., Remedios, J. J., Ridolfi, M., and Spang, R.: MIPAS level 2 operational analysis, Atmos. Chem. Phys., 6, 5605–5630, https://doi.org/10.5194/acp-6-5605-2006, 2006. a
Raspollini, P., Carli, B., Carlotti, M., Ceccherini, S., Dehn, A., Dinelli, B. M., Dudhia, A., Flaud, J.-M., López-Puertas, M., Niro, F., Remedios, J. J., Ridolfi, M., Sembhi, H., Sgheri, L., and von Clarmann, T.: Ten years of MIPAS measurements with ESA Level 2 processor V6 – Part 1: Retrieval algorithm and diagnostics of the products, Atmos. Meas. Tech., 6, 2419–2439, https://doi.org/10.5194/amt-6-2419-2013, 2013. a, b, c
Raspollini, P., Arnone, E., Barbara, F., Bianchini, M., Carli, B., Ceccherini,
S., Chipperfield, M. P., Dehn, A., Della Fera, S., Dinelli, B. M., Dudhia, A.,
Flaud, J.-M., Gai, M., Kiefer, M., López-Puertas, M., Moore, D. P., Piro, A.,
Remedios, J. J., Ridolfi, M., Sembhi, H., Sgheri, L., and Zoppetti, N.: Level
2 processor and auxiliary data for ESA Version 8 final full mission analysis
of MIPAS measurements on ENVISAT, Atmos. Meas. Tech. Discuss. [preprint],
https://doi.org/10.5194/amt-2021-235, in review, 2021. a, b, c, d, e, f
Remedios, J. J., Leigh, R. J., Waterfall, A. M., Moore, D. P., Sembhi, H., Parkes, I., Greenhough, J., Chipperfield, M. P., and Hauglustaine, D.: MIPAS reference atmospheres and comparisons to V4.61/V4.62 MIPAS level 2 geophysical data sets, Atmos. Chem. Phys. Discuss., 7, 9973–10017, https://doi.org/10.5194/acpd-7-9973-2007, 2007. a
Ridolfi, M. and Sgheri, L.: A self-adapting and altitude-dependent regularization method for atmospheric profile retrievals, Atmos. Chem. Phys., 9, 1883–1897, https://doi.org/10.5194/acp-9-1883-2009, 2009. a
Ridolfi, M., Carli, B., Carlotti, M., von Clarmann, T., Dinelli, B. M., Dudhia, A., Flaud, J.-M., Höpfner, M., Morris, P. E., Raspollini, P., Stiller, G., and Wells, R. J.: Optimized forward model and retrieval scheme for MIPAS near-real-time dataprocessing, Appl. Optics, 39, 1323–1340, https://doi.org/10.1364/AO.39.001323, 2000.
a
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice, World Scientific Book, https://doi.org/10.1142/3171, 2000. a, b
Rothman, L., Gordon, I., Barbe, A., Benner, D., Bernath, P., Birk, M., Boudon, V., Brown, L., Campargue, A., Champion, J.-P., Chance, K., Coudert, L., Dana, V., Devi, V., Fally, S., Flaud, J.-M., Gamache, R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W., Mandin, J.-Y., Massie, S., Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Predoi-Cross, A., Rinsland, C., Rotger, M., Šimeçková, M., Smith, M., Sung, K., Tashkun, S., Tennyson, J., Toth, R., Vandaele, A., and Auwera, J. V.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013, hITRAN, 2009. a
Singh, H.: Phosgene in the ambient air, Nature, 264 428–429, https://doi.org/10.1038/264428a0, 1976. a
Stiller, G. P., von Clarmann, T., Funke, B., Glatthor, N., Hase, F., Höpfner, M., and Linden, A.: Sensitivity of trace gas abundances retrievals from infrared limb emission spectra to simplifying approximations in radiative transfer modelling, J. Quant. Spectrosc. Ra., 72, 249–280, https://doi.org/10.1016/S0022-4073(01)00123-6, 2002. a
Tchana, F., Lafferty, W., Flaud, J.-M., Manceron, L., and Ndao, M.: High-resolution analysis of the v1 and v5 bands of phosgene 35Cl2CO and 35Cl37ClCO, Mol. Phys., 113, 1–6, https://doi.org/10.1080/00268976.2015.1015638, 2015. a, b, c, d
Toon, G. C., Blavier, J.-F., Sen, B., and Drouin, B. J.: Atmospheric COCl2 measured by solar occultation spectrometry, Geophys. Res. Lett., 28, 2835–2838, https://doi.org/10.1029/2000GL012156, 2001. a, b
Valeri, M., Barbara, F., Boone, C., Ceccherini, S., Gai, M., Maucher, G., Raspollini, P., Ridolfi, M., Sgheri, L., Wetzel, G., and Zoppetti, N.: CCl4 distribution derived from MIPAS ESA v7 data: intercomparisons, trend, and lifetime estimation, Atmos. Chem. Phys., 17, 10143–10162, https://doi.org/10.5194/acp-17-10143-2017, 2017. a, b, c, d, e
Wilson, S., J. Crutzen, P., Schuster, G., W. T. Griffith, D., and Helas, G.: Phosgene Measurements in the Upper Troposphere and Lower Stratosphere, Nature, 334, 689–691, https://doi.org/10.1038/334689a0, 1988. a
Short summary
Phosgene (COCl2) is a toxic gas whose presence is a consequence of human activity. Besides its direct injection in the troposphere, stratospheric COCl2 is produced from the decomposition of CCl4, an anthropogenic gas regulated by the Montreal Protocol. As a consequence, COCl2 negative trends characterize the lower and part of the middle stratosphere. However, we find positive trends in the upper troposphere, demonstrating the non-negligible role of other Cl-containing species not yet regulated.
Phosgene (COCl2) is a toxic gas whose presence is a consequence of human activity. Besides its...