Articles | Volume 14, issue 2
Atmos. Meas. Tech., 14, 853–867, 2021
https://doi.org/10.5194/amt-14-853-2021
Atmos. Meas. Tech., 14, 853–867, 2021
https://doi.org/10.5194/amt-14-853-2021

Research article 03 Feb 2021

Research article | 03 Feb 2021

Generalized canonical transform method for radio occultation sounding with improved retrieval in the presence of horizontal gradients

Michael Gorbunov et al.

Related authors

The influence of the signal-to-noise ratio upon radio occultation inversion quality
Michael Gorbunov
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-114,https://doi.org/10.5194/amt-2020-114, 2020
Revised manuscript not accepted
Reflected ray retrieval from radio occultation data using radio holographic filtering of wave fields in ray space
Michael E. Gorbunov, Estel Cardellach, and Kent B. Lauritsen
Atmos. Meas. Tech., 11, 1181–1191, https://doi.org/10.5194/amt-11-1181-2018,https://doi.org/10.5194/amt-11-1181-2018, 2018
Short summary
Fluctuations of radio occultation signals in sounding the Earth's atmosphere
Valery Kan, Michael E. Gorbunov, and Viktoria F. Sofieva
Atmos. Meas. Tech., 11, 663–680, https://doi.org/10.5194/amt-11-663-2018,https://doi.org/10.5194/amt-11-663-2018, 2018
Short summary
Wave-optics uncertainty propagation and regression-based bias model in GNSS radio occultation bending angle retrievals
Michael E. Gorbunov and Gottfried Kirchengast
Atmos. Meas. Tech., 11, 111–125, https://doi.org/10.5194/amt-11-111-2018,https://doi.org/10.5194/amt-11-111-2018, 2018
Short summary
Quantification of structural uncertainty in climate data records from GPS radio occultation
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013,https://doi.org/10.5194/acp-13-1469-2013, 2013

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Support vector machine tropical wind speed retrieval in the presence of rain for Ku-band wind scatterometry
Xingou Xu and Ad Stoffelen
Atmos. Meas. Tech., 14, 7435–7451, https://doi.org/10.5194/amt-14-7435-2021,https://doi.org/10.5194/amt-14-7435-2021, 2021
Short summary
Evaluation of convective boundary layer height estimates using radars operating at different frequency bands
Anna Franck, Dmitri Moisseev, Ville Vakkari, Matti Leskinen, Janne Lampilahti, Veli-Matti Kerminen, and Ewan O'Connor
Atmos. Meas. Tech., 14, 7341–7353, https://doi.org/10.5194/amt-14-7341-2021,https://doi.org/10.5194/amt-14-7341-2021, 2021
Short summary
Four-dimensional mesospheric and lower thermospheric wind fields using Gaussian process regression on multistatic specular meteor radar observations
Ryan Volz, Jorge L. Chau, Philip J. Erickson, Juha P. Vierinen, J. Miguel Urco, and Matthias Clahsen
Atmos. Meas. Tech., 14, 7199–7219, https://doi.org/10.5194/amt-14-7199-2021,https://doi.org/10.5194/amt-14-7199-2021, 2021
Short summary
Correction of wind bias for the lidar on board Aeolus using telescope temperatures
Fabian Weiler, Michael Rennie, Thomas Kanitz, Lars Isaksen, Elena Checa, Jos de Kloe, Ngozi Okunde, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021,https://doi.org/10.5194/amt-14-7167-2021, 2021
Short summary
Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements
Xinyan Li, Yuanjian Yang, Jiaqin Mi, Xueyan Bi, You Zhao, Zehao Huang, Chao Liu, Lian Zong, and Wanju Li
Atmos. Meas. Tech., 14, 7007–7023, https://doi.org/10.5194/amt-14-7007-2021,https://doi.org/10.5194/amt-14-7007-2021, 2021
Short summary

Cited articles

Arnold, V. I.: Mathematical Methods of Classical Mechanics, Springer, New York, USA, 1978. a, b, c, d, e, f, g
Egorov, Y. V.: Lectures on Partial Differential Equations, Moscow State University Press, Moscow, Russia, 1985 (in Russian). a, b, c, d
Egorov, Y. V. and Shubin, M. A.: Partial Differential Equations IV, Springer, Berlin and Heidelberg, Germany, https://doi.org/10.1007/978-3-662-09207-1, 1993. a, b, c, d
Fock, V. A.: Fundamentals of Quantum Mechanics, Mir Publishers, available at: https://archive.org/details/FockFundamentalsOfQuantumMechanicsMir1986 (last access: 22 January 2021), 1978. a, b, c, d, e, f
Goldstein, H., Poole, C., and Safko, J.: Classical Mechanics, Pearson Education Limited, London, UK, 2014. a, b, c, d, e, f
Download
Short summary
Currently, the canonical transform (CT) approach to the processing of radio occultation observations is widely used. For the spherically symmetric atmosphere, the applicability of this method can be strictly proven. However, in the presence of horizontal gradients, this approach may not work. Here we introduce a generalization of the CT method in order to reduce the errors due to horizontal gradients.