Articles | Volume 15, issue 7
https://doi.org/10.5194/amt-15-2021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-2021-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards the use of conservative thermodynamic variables in data assimilation: a case study using ground-based microwave radiometer measurements
Pascal Marquet
CORRESPONDING AUTHOR
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Pauline Martinet
CORRESPONDING AUTHOR
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Jean-François Mahfouf
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Alina Lavinia Barbu
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Benjamin Ménétrier
INP, IRIT, Université de Toulouse, Toulouse, France
Related authors
No articles found.
Théophane Costabloz, Frédéric Burnet, Christine Lac, Pauline Martinet, Julien Delanoë, Susana Jorquera, and Maroua Fathalli
Atmos. Chem. Phys., 25, 6539–6573, https://doi.org/10.5194/acp-25-6539-2025, https://doi.org/10.5194/acp-25-6539-2025, 2025
Short summary
Short summary
This study documents vertical profiles of liquid water content (LWC) in fogs from in situ measurements collected during the SOFOG3D field campaign in 2019–2020. The analysis of 140 vertical profiles reveals a reverse trend in LWC, maximum values at ground decreasing with height, during stable conditions in optically thin fogs, evolving towards quasi-adiabatic characteristics when fogs become thick. These results offer new perspectives for better constraining fog numerical simulations.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
Earth Syst. Dynam., 16, 803–840, https://doi.org/10.5194/esd-16-803-2025, https://doi.org/10.5194/esd-16-803-2025, 2025
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the Land Use Model Intercomparison Project (LUMIP) and the Coupled Model Intercomparison Project Phase 6 (CMIP6). We found that LUC-induced carbon emissions contribute to a BGC warming of 0.21 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasize the need for improved representations of LUC processes.
Silvana Ramos Buarque, Bertrand Decharme, Alina Lavinia Barbu, and Laurent Franchisteguy
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-451, https://doi.org/10.5194/essd-2024-451, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
The Crocus-ERA5 snow dataset supports Arctic snow monitoring and contributes to the Arctic Report Card. It improves on its predecessor with higher spatial resolution (0.25° vs. 0.75°), enhancing topographic and land cover detail. The product’s performance is assessed in terms of snow depth and extent compared to in situ observations and satellite data. The findings show a notable improvement, though biases remain, particularly in boreal forests, where the model tends to overestimate spring melt.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024, https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Short summary
We describe the multivariate static background error covariance (B) for the JEDI-MPAS 3D-Var data assimilation system. With tuned B parameters, the multivariate B gives physically balanced analysis increment fields in the single-observation test framework. In the month-long cycling experiment with a global 60 km mesh, 3D-Var with static B performs stably. Due to its simple workflow and minimal computational requirements, JEDI-MPAS 3D-Var can be useful for the research community.
Cheikh Dione, Martial Haeffelin, Frédéric Burnet, Christine Lac, Guylaine Canut, Julien Delanoë, Jean-Charles Dupont, Susana Jorquera, Pauline Martinet, Jean-François Ribaud, and Felipe Toledo
Atmos. Chem. Phys., 23, 15711–15731, https://doi.org/10.5194/acp-23-15711-2023, https://doi.org/10.5194/acp-23-15711-2023, 2023
Short summary
Short summary
This paper documents the role of thermodynamics and turbulence in the fog life cycle over southwestern France. It is based on a unique dataset collected during the SOFOG3D field campaign in autumn and winter 2019–2020. The paper gives a threshold for turbulence driving the different phases of the fog life cycle and the role of advection in the night-time dissipation of fog. The results can be operationalised to nowcast fog and improve short-range forecasts in numerical weather prediction models.
Jonathan J. Guerrette, Zhiquan Liu, Chris Snyder, Byoung-Joo Jung, Craig S. Schwartz, Junmei Ban, Steven Vahl, Yali Wu, Ivette Hernández Baños, Yonggang G. Yu, Soyoung Ha, Yannick Trémolet, Thomas Auligné, Clementine Gas, Benjamin Ménétrier, Anna Shlyaeva, Mark Miesch, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 16, 7123–7142, https://doi.org/10.5194/gmd-16-7123-2023, https://doi.org/10.5194/gmd-16-7123-2023, 2023
Short summary
Short summary
We demonstrate an ensemble of variational data assimilations (EDA) with the Model for Prediction Across Scales and the Joint Effort for Data assimilation Integration (JEDI) software framework. When compared to 20-member ensemble forecasts from operational initial conditions, those from 80-member EDA-generated initial conditions improve flow-dependent error covariances and subsequent 10 d forecasts. These experiments are repeatable for any atmospheric model with a JEDI interface.
Pragya Vishwakarma, Julien Delanoë, Susana Jorquera, Pauline Martinet, Frederic Burnet, Alistair Bell, and Jean-Charles Dupont
Atmos. Meas. Tech., 16, 1211–1237, https://doi.org/10.5194/amt-16-1211-2023, https://doi.org/10.5194/amt-16-1211-2023, 2023
Short summary
Short summary
Cloud observations are necessary to characterize the cloud properties at local and global scales. The observations must be translated to cloud geophysical parameters. This paper presents the estimation of liquid water content (LWC) using radar and microwave radiometer (MWR) measurements. Liquid water path from MWR scales LWC and retrieves the scaling factor (ln a). The retrievals are compared with in situ observations. A climatology of ln a is built to estimate LWC using only radar information.
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022, https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary
Short summary
Cloud radars and microwave radiometers offer the potential to improve fog forecasts when assimilated into a high-resolution model. As this process can be complex, a retrieval of model variables is sometimes made as a first step. In this work, results from a 1D-Var algorithm for the retrieval of temperature, humidity and cloud liquid water content are presented. The algorithm is applied first to a synthetic dataset and then to a dataset of real measurements from a recent field campaign.
Alistair Bell, Pauline Martinet, Olivier Caumont, Benoît Vié, Julien Delanoë, Jean-Charles Dupont, and Mary Borderies
Atmos. Meas. Tech., 14, 4929–4946, https://doi.org/10.5194/amt-14-4929-2021, https://doi.org/10.5194/amt-14-4929-2021, 2021
Short summary
Short summary
This paper presents work towards making retrievals on the liquid water content in fog and low clouds. Future retrievals will rely on a radar simulator and high-resolution forecast. In this work, real observations are used to assess the errors associated with the simulator and forecast. A selection method to reduce errors associated with the forecast is proposed. It is concluded that the distribution of errors matches the requirements for future retrievals.
Matic Šavli, Vivien Pourret, Christophe Payan, and Jean-François Mahfouf
Atmos. Meas. Tech., 14, 4721–4736, https://doi.org/10.5194/amt-14-4721-2021, https://doi.org/10.5194/amt-14-4721-2021, 2021
Short summary
Short summary
The ESA's Aeolus satellite wind retrieval is provided through a series of processors. It depends on the temperature and pressure specification, which, however, are not measured by the satellite. The numerical weather predicted values are used instead, but these are erroneous. This article studies the sensitivity of the wind retrieval by introducing errors in temperature and pressure. This has been found to be small for Aeolus but is expected to be more crucial for future missions.
Pauline Martinet, Domenico Cimini, Frédéric Burnet, Benjamin Ménétrier, Yann Michel, and Vinciane Unger
Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020, https://doi.org/10.5194/amt-13-6593-2020, 2020
Short summary
Short summary
Each year large human and economical losses are due to fog episodes. However, fog forecasts remain quite inaccurate, partly due to a lack of observations in the atmospheric boundary layer. The benefit of ground-based microwave radiometers has been investigated and has demonstrated their capability of significantly improving the initial state of temperature and liquid water content profiles in current numerical weather prediction models, paving the way for improved fog forecasts in the future.
Cited articles
Bauer, L. A.: The relation between “potential temperature” and “entropy”, Phys. Rev., 26, 177–183, https://doi.org/10.1103/PhysRevSeriesI.26.177, 1908. a
Benjamin, S. G., Brewster, K. A., Brümmer, R., Jewett, B. F., Schlatter, T. W., Smith, T. L., and Stamus, P. A.: An Isentropic Three-Hourly Data Assimilation System Using ACARS Aircraft Observations, Mon. Weather Rev., 119, 888–906, https://doi.org/10.1175/1520-0493(1991)119<0888:AITHDA>2.0.CO;2, 1991. a, b
Benjamin, S. G., Grell, G. A., Brown, J. M., Smirnova, T. G., and Bleck, R.: Mesoscale Weather Prediction with the RUC Hybrid Isentropic-Terrain-Following Coordinate Model, Mon. Weather Rev., 132, 473–494, https://doi.org/10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2, 2004. a
Betts, A. K.: Non-precipitating cumulus convection and its parameterization, Q. J. Roy. Meteor. Soc., 99, 178–196, https://doi.org/10.1002/qj.49709941915, 1973. a, b, c
Blot, E.: Etude de l'entropie humide dans un contexte d'analyse et de
prévision du temps, Rapport de stage d'approfondissement EIENM3, Zenodo [report], https://doi.org/10.5281/zenodo.6396371, 2013. a
Brousseau, P., Seity, Y., Ricard, D., and Léger, J.: Improvement of the
forecast of convective activity from the AROME-France system, Q. J.
Roy. Meteor. Soc., 142, 2231–2243, https://doi.org/10.1002/qj.2822,
2016. a
Cimini, D., Rosenkranz, P. W., Tretyakov, M. Y., Koshelev, M. A., and Romano, F.: Uncertainty of atmospheric microwave absorption model: impact on ground-based radiometer simulations and retrievals, Atmos. Chem. Phys., 18, 15231–15259, https://doi.org/10.5194/acp-18-15231-2018, 2018. a
Cimini, D., Hocking, J., De Angelis, F., Cersosimo, A., Di Paola, F., Gallucci, D., Gentile, S., Geraldi, E., Larosa, S., Nilo, S., Romano, F., Ricciardelli, E., Ripepi, E., Viggiano, M., Luini, L., Riva, C., Marzano, F. S., Martinet, P., Song, Y. Y., Ahn, M. H., and Rosenkranz, P. W.: RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability, Geosci. Model Dev., 12, 1833–1845, https://doi.org/10.5194/gmd-12-1833-2019, 2019. a
Cimini, D., Hocking, J., De Angelis, F., Cersosimo, A., Di Paola, F., Gallucci, D., Gentile, S., Geraldi, E., Larosa, S., Nilo, S., Romano, F., Ricciardelli, E., Ripepi, E., Viggiano, M., Luini, L., Riva, C., Marzano, F. S., Martinet, P., Song, Y. Y., Ahn, M. H., and Rosenkranz, P. W.: RTTOV-gb, CETEMPS [code], http://cetemps.aquila.infn.it/rttovgb/rttovgb.html, last access: 31 March 2022. a
Clough, S. A. and Testud, J.: The Fronts-87 experiment and mesoscale frontal dynamics project, WMO Bulletin, 37, 276–281, 1988. a
Cullen, M. J. P.: Four-dimensional variational data assimilation: A new
formulation of the background-error covariance matrix based on a
potential-vorticity representation, Q. J. Roy. Meteor. Soc., 129,
2777–2796, https://doi.org/10.1256/qj.02.10, 2003. a
De Angelis, F., Cimini, D., Hocking, J., Martinet, P., and Kneifel, S.: RTTOV-gb – adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations, Geosci. Model Dev., 9, 2721–2739, https://doi.org/10.5194/gmd-9-2721-2016, 2016. a, b, c
De Angelis, F., Cimini, D., Löhnert, U., Caumont, O., Haefele, A., Pospichal, B., Martinet, P., Navas-Guzmán, F., Klein-Baltink, H., Dupont, J.-C., and Hocking, J.: Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network, Atmos. Meas. Tech., 10, 3947–3961, https://doi.org/10.5194/amt-10-3947-2017, 2017. a
Deblonde, G. and English, S.: One-Dimensional Variational Retrievals from
SSMIS-Simulated Observations, J. Appl. Meteor. Climatol., 42,
1406–1420, https://doi.org/10.1175/1520-0450(2003)042<1406:OVRFSO>2.0.CO;2, 2003. a, b
Delanoë, J.: SOFOG3D_CHARBONNIERE_LATMOS_BASTA-vertical-12m5_L1, IPSL (Institut Pierre Simon Laplace), Paris, France [data set], https://doi.org/10.25326/155, 2021. a
Delanoë, J., Protat, A., Vinson, J.-P., Brett, W., Caudoux, C., Bertrand, F., du Chatelet, J. P., Hallali, R., Barthes, L., Haeffelin, M., and Dupont,
J.-C.: BASTA: a 95-GHz FMCW Doppler Radar for Cloud and Fog Studies, J.
Atmos. Ocean. Technol., 33, 1023–1038, https://doi.org/10.1175/JTECH-D-15-0104.1,
2016. a, b
Desroziers, G.: A Coordinate Change for Data Assimilation in Spherical Geometry of Frontal Structures, Mon. Weather Rev., 125, 3030–3038,
https://doi.org/10.1175/1520-0493(1997)125<3030:ACCFDA>2.0.CO;2, 1997. a
Desroziers, G. and Lafore, J.-P.: A Coordinate Transformation for Objective
Frontal Analysis, Mon. Weather Rev., 121, 1531–1553,
https://doi.org/10.1175/1520-0493(1993)121<1531:ACTFOF>2.0.CO;2, 1993. a
Destouches, M., Montmerle, T., Michel, Y., and Ménétrier, B.: Estimating
optimal localization for sampled background-error covariances of hydrometeor variables, Q. J. Roy. Meteor. Soc., 147, 74–93,
https://doi.org/10.1002/qj.3906, 2021. a
Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., Weissmann, M.,
Reich, H., Brousseau, P., Montmerle, T., Wattrelot, E., Bučánek, A.,
Mile, M., Hamdi, R., Lindskog, M., Barkmeijer, J., Dahlbom, M., Macpherson,
B., Ballard, S., Inverarity, G., Carley, J., Alexander, C., Dowell, D., Liu, S., Ikuta, Y., and Fujita, T.: Survey of data assimilation methods for
convective-scale numerical weather prediction at operational centres, Q. J. Roy. Meteor. Soc., 144, 1218–1256,
https://doi.org/10.1002/qj.3179, 2018. a
Hauf, T. and Höller, H.: Entropy and potential temperature, J. Atmos. Sci., 44, 2887–2901, https://doi.org/10.1175/1520-0469(1987)044<2887:EAPT>2.0.CO;2, 1987. a, b
Hewison, T. J.: 1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer, IEEE T. Geosci. Remote, 45, 2163–2168, https://doi.org/10.1109/TGRS.2007.898091, 2007. a
Marquet, P.: On the definition of a moist-air potential vorticity, Q. J.
Roy. Meteorol. Soc., 140, 917–929, https://doi.org/10.1002/qj.2182, 2014. a
Marquet, P.: A Third-Law Isentropic Analysis of a Simulated Hurricane, J.
Atmos. Sci., 74, 3451–3471, https://doi.org/10.1175/JAS-D-17-0126.1, 2017. a
Marquet, P. and Bechtold, P.: A new Estimated Inversion Strength (EIS) based on the moist-air entropy, Research activities in Earth system modelling, Working Group on Numerical Experimentation. Report No. 50, WCRP (Blue Book) Report No.12/2020, edited by: Astakhova, E., WMO, Geneva, 50, 1–2, http://bluebook.meteoinfo.ru/uploads/2020/docs/04_Marquet_Pascal_NewEntropyEIS.pdf (last access: 31 March 2022), 2020. a
Marquet, P. and Dauhut, T.: Reply to “Comments on `A third-law isentropic
analysis of a simulated hurricane”', J. Atmos. Sci., 75, 3735–3747,
https://doi.org/10.1175/JAS-D-18-0126.1, 2018. a
Marquet, P. and Geleyn, J.-F.: On a general definition of the squared
Brunt-Väisälä frequency associated with the specific moist
entropy potential temperature, Q. J. Roy. Meteor. Soc., 139, 85–100,
https://doi.org/10.1002/qj.1957, 2013. a
Marquet, P. and Geleyn, J.-F.: Formulations of moist thermodynamics for
atmospheric modelling, in: Parameterization of Atmospheric Convection.
Vol II: Current Issues and New Theories, edited by: Plant, R. S. and Yano,
J.-I., World Scientific, Imperial College Press, 221–274,
https://doi.org/10.1142/9781783266913_0026, 2015. a, b
Martinet, P.: SOFOG3D_CHARBONNIERE_CNRM_MWR-HATPRO-TB_L1, Météo-France, Toulouse, France [data], https://doi.org/10.25326/148, 2021. a
Martinet, P., Cimini, D., Burnet, F., Ménétrier, B., Michel, Y., and Unger, V.: Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: a 1D-Var study, Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020, 2020. a, b, c, d, e
Maschwitz, G., Löhnert, U., Crewell, S., Rose, T., and Turner, D. D.: Investigation of ground-based microwave radiometer calibration techniques at 530 hPa, Atmos. Meas. Tech., 6, 2641–2658, https://doi.org/10.5194/amt-6-2641-2013, 2013. a
Ménétrier, B. and Montmerle, T.: Heterogeneous background-error covariances for the analysis and forecast of fog events, Q. J. Roy. Meteor. Soc., 137, 2004–2013, https://doi.org/10.1002/qj.802, 2011. a, b
Ménétrier, B., Abdi-Oskouei, M., Olah, M. J., Trémolet, Y., Sluka, T., Davies, D., Holdaway, D., Kinami, T., Shlyaeva, A., Gas, C., Mahajan, R., Honeyager, R., Śmigaj, W., and Jung, B.-J.: JCSDA/saber: 1.1.3 (1.1.3), Zenodo [code], https://doi.org/10.5281/zenodo.6400454, 2022. a
Michel, Y., Auligné, T., and Montmerle, T.: Heterogeneous Convective-Scale
Background Error Covariances with the Inclusion of Hydrometeor Variables,
Mon. Weather Rev., 139, 2994–3015, https://doi.org/10.1175/2011MWR3632.1, 2011. a
Montmerle, T. and Berre, L.: Diagnosis and formulation of heterogeneous
background-error covariances at the mesoscale, Q. J. Roy. Meteor. Soc.,
136, 1408–1420, https://doi.org/10.1002/qj.655, 2010. a
NWP SAF: RTTOV-gb, Eumetsat [code], https://nwp-saf.eumetsat.int/site/software/rttov-gb/, last access: 31 March 2022a. a
NWP SAF: 1D-Var, Eumetsat [code], https://nwp-saf.eumetsat.int/site/software/1d-var/, last access: 31 March 2022. a
Richardson, L. F.: Atmospheric stirring measured by precipitation, Proc. Roy.
Soc. London A, 96, 9–18, 1919. a
Richardson, L. F.: Weather prediction by numerical process, 1–229,
Cambridge University Press, ISBN 978-0-521-68044-8, 1922. a
Rodgers, C. D.: Retrieval of atmospheric temperature and composition from
remote measurements of thermal radiation, Rev. Geophys., 14, 609–624,
https://doi.org/10.1029/RG014i004p00609, 1976. a, b
Rose, T., Crewell, S., Löhnert, U., and Simmer, C.: A network suitable
microwave radiometer for operational monitoring of the cloudy atmosphere,
Atmos. Res., 75, 183–200, https://doi.org/10.1016/j.atmosres.2004.12.005, 2005. a, b
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France convective-scale operational
model, Mon. Weather Rev., 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011. a, b
Shapiro, M. A. and Hastings, J. T.: Objective cross-section analyses by Hermite polynomial interpolation on isentropic surfaces, J. Appl. Meteorol. Climatol., 12, 753–762,
https://doi.org/10.1175/1520-0450(1973)012<0753:OCSABH>2.0.CO;2, 1973.
a, b
Thépaut, J.-N. and Moll, P.: Variational inversion of simulated TOVS
radiances using the adjoint technique, Q. J. Roy. Meteor. Soc., 116,
1425–1448, 1990. a
Wlasak, M., Nichols, N. K., and Roulstone, I.: Use of potential vorticity for
incremental data assimilation, Q. J. Roy. Meteor. Soc., 132, 2867–2886,
https://doi.org/10.1256/qj.06.02, 2006. a
Short summary
Two conservative thermodynamic variables (moist-air entropy potential temperature and total water content) are introduced into a one-dimensional EnVar data assimilation system to demonstrate their benefit for future operational assimilation schemes, with the use of microwave brightness temperatures from a ground-based radiometer installed during the field campaign SOFGO3D. Results show that the brightness temperatures analysed with the new variables are improved, including the liquid water.
Two conservative thermodynamic variables (moist-air entropy potential temperature and total...