Articles | Volume 15, issue 11
https://doi.org/10.5194/amt-15-3555-2022
https://doi.org/10.5194/amt-15-3555-2022
Research article
 | Highlight paper
 | 
14 Jun 2022
Research article | Highlight paper |  | 14 Jun 2022

Determination of atmospheric column condensate using active and passive remote sensing technology

Huige Di, Yun Yuan, Qing Yan, Wenhui Xin, Shichun Li, Jun Wang, Yufeng Wang, Lei Zhang, and Dengxin Hua

Related authors

The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024,https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024,https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary
Detection and analysis of cloud boundary in Xi'an, China, employing 35 GHz cloud radar aided by 1064 nm lidar
Yun Yuan, Huige Di, Yuanyuan Liu, Tao Yang, Qimeng Li, Qing Yan, Wenhui Xin, Shichun Li, and Dengxin Hua
Atmos. Meas. Tech., 15, 4989–5006, https://doi.org/10.5194/amt-15-4989-2022,https://doi.org/10.5194/amt-15-4989-2022, 2022
Short summary
Performance evaluation of an integrated path differential absorption LIDAR model for surface pressure from low-Earth orbit
Guanglie Hong, Yu Dong, and Huige Di
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-69,https://doi.org/10.5194/amt-2022-69, 2022
Revised manuscript not accepted
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024,https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024,https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024,https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024,https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024,https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary

Cited articles

Babb D. M., Verlinde J., and Rust B. W.: The Removal of Turbulent Broadening in Radar Doppler Spectra Using Linear Inversion with Double-Sided Constraints, J. Atmos. Ocean. Tech, 17, 1583–1595, https://doi.org/10.1175/1520-0426(2000)017<1583:TROTBI>2.0.CO;2​​​​​​​, 1999. 
Behrendt, A. and Nakamura, T.: Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature, Opt. Express, 10, 805–17, https://doi.org/10.1364/OE.10.000805, 2002. 
Cooney, J.: Measurement of atmospheric temperature profiles by raman backscatter, J. Appl. Meteorol. Clim., 11, 108–112, https://doi.org/10.1175/1520-0450(1972)011<0108:moatpb>2.0.co;2, 1972. 
Frehlich, R., Hannon, S. M., and Henderson, S. W.: Performance of a 2-m coherent doppler lidar for wind measurements, J. Atmos. Ocean. Tech., 11, 1517–1528, https://doi.org/10.1175/1520-0426(1994)011<1517:POACDL>2.0.CO;2​​​​​​​, 1994. 
Gossard, E. E.: Measurement of cloud droplet size spectra by doppler radar, J. Atmos. Ocean. Tech., 11, 712–726, https://doi.org/10.1175/1520-0426(1994)011<0712:MOCDSS>2.0.CO;2​​​​​​​, 1994. 
Download
Executive editor
The remote sensing observation of condensation water in cloud is realized by using active and passive remote sensing instruments. This is the first application, to our knowledge, of observations for atmospheric column condensate evaluation, which is significant for research on the hydrologic cycle and the assessment of cloud water resources.
Short summary
It is necessary to correctly evaluate the amount of cloud water resources in an area. Currently, there is a lack of effective observation methods for atmospheric column condensate evaluation. We propose a method for atmospheric column condensate by combining millimetre cloud radar, lidar and microwave radiometers. The method can realise determination of atmospheric column condensate. The variation of cloud before precipitation is considered, and the atmospheric column is deduced and obtained.