Articles | Volume 16, issue 16
https://doi.org/10.5194/amt-16-3931-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-3931-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization
Department of Atmospheric Sciences, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA
Aviad Levis
Computer and Mathematical Sciences Department, California Institute of Technology, Pasadena, CA 91125, USA
Larry Di Girolamo
Department of Atmospheric Sciences, University of Illinois at
Urbana-Champaign, Urbana, IL 61801, USA
Vadim Holodovsky
Viterbi Faculty of Electrical and Computer Engineering, Technion –
Israel Institute of Technology, Haifa 3200003, Israel
Linda Forster
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA
Anthony B. Davis
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA
Yoav Y. Schechner
Viterbi Faculty of Electrical and Computer Engineering, Technion –
Israel Institute of Technology, Haifa 3200003, Israel
Related authors
Jesse Loveridge and Larry Di Girolamo
Atmos. Meas. Tech., 18, 3009–3033, https://doi.org/10.5194/amt-18-3009-2025, https://doi.org/10.5194/amt-18-3009-2025, 2025
Short summary
Short summary
Satellites can measure cloud geometry using stereoscopy. However, clouds are transparent and often have tenuous boundaries. We evaluate the effect of this on stereoscopy using numerical simulations. Stereoscopic techniques retrieve a cloud boundary that is ~100 m interior to the true boundary and is smoother, depending on the cloud shape and resolution of the instrument. This error is similar across views, demonstrating the strength of stereoscopy for detecting changes in cloud geometry.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023, https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
Short summary
We describe a new method for measuring the 3D spatial variations in water within clouds using the reflected light of the Sun viewed at multiple different angles by satellites. This is a great improvement over older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary
Short summary
Satellite-retrieved cloud microphysics are widely used in climate research because of their central role in water and energy cycles. Here, we provide the first detailed investigation of retrieved cloud drop sizes from in situ and various satellite and airborne remote sensing techniques applied to real cumulus cloud fields. We conclude that the most widely used passive remote sensing method employed in climate research produces high biases of 6–8 µm (60 %–80 %) caused by 3-D radiative effects.
Linda Forster, Anna Weber, and Bernhard Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1369, https://doi.org/10.5194/egusphere-2025-1369, 2025
Short summary
Short summary
CrystalTrace is a Monte Carlo raytracing algorithm for simulating radiative transfer in ice clouds with different crystal shapes and orientations. Integrated into libradtran’s MYSTIC solver, it enables efficient, realistic simulations of ice alongside water clouds. By computing single-scattering properties online at the crystal scale, it eliminates the need for precomputed lookup tables, improving efficiency and angular resolution for satellite, airborne, and ground-based observation retrievals.
Jesse Loveridge and Larry Di Girolamo
Atmos. Meas. Tech., 18, 3009–3033, https://doi.org/10.5194/amt-18-3009-2025, https://doi.org/10.5194/amt-18-3009-2025, 2025
Short summary
Short summary
Satellites can measure cloud geometry using stereoscopy. However, clouds are transparent and often have tenuous boundaries. We evaluate the effect of this on stereoscopy using numerical simulations. Stereoscopic techniques retrieve a cloud boundary that is ~100 m interior to the true boundary and is smoother, depending on the cloud shape and resolution of the instrument. This error is similar across views, demonstrating the strength of stereoscopy for detecting changes in cloud geometry.
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024, https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Short summary
Cloud droplet temperature and lifetime impact cloud microphysical processes such as the activation of ice-nucleating particles. We investigate the thermal and radial evolution of supercooled cloud droplets and their surrounding environments with an aim to better understand observed enhanced ice formation at supercooled cloud edges. This analysis shows that the magnitude of droplet cooling during evaporation is greater than estimated from past studies, especially for drier environments.
Michie Vianca De Vera, Larry Di Girolamo, Guangyu Zhao, Robert M. Rauber, Stephen W. Nesbitt, and Greg M. McFarquhar
Atmos. Chem. Phys., 24, 5603–5623, https://doi.org/10.5194/acp-24-5603-2024, https://doi.org/10.5194/acp-24-5603-2024, 2024
Short summary
Short summary
Tropical oceanic low clouds remain a dominant source of uncertainty in cloud feedback in climate models due to their macrophysical properties (fraction, size, height, shape, distribution) being misrepresented. High-resolution satellite imagery over the Philippine oceans is used here to characterize cumulus macrophysical properties and their relationship to meteorological variables. Such information can act as a benchmark for cloud models and can improve low-cloud generation in climate models.
Genevieve Rose Lorenzo, Avelino F. Arellano, Maria Obiminda Cambaliza, Christopher Castro, Melliza Templonuevo Cruz, Larry Di Girolamo, Glenn Franco Gacal, Miguel Ricardo A. Hilario, Nofel Lagrosas, Hans Jarett Ong, James Bernard Simpas, Sherdon Niño Uy, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10579–10608, https://doi.org/10.5194/acp-23-10579-2023, https://doi.org/10.5194/acp-23-10579-2023, 2023
Short summary
Short summary
Aerosol and weather interactions in Southeast Asia are complex and understudied. An emerging aerosol climatology was established in Metro Manila, the Philippines, from aerosol particle physicochemical properties and meteorology, revealing five sources. Even with local traffic, transported smoke from biomass burning, aged dust, and cloud processing, background marine particles dominate and correspond to lower aerosol optical depth in Metro Manila compared to other Southeast Asian megacities.
Rose Marie Miller, Robert M. Rauber, Larry Di Girolamo, Matthew Rilloraza, Dongwei Fu, Greg M. McFarquhar, Stephen W. Nesbitt, Luke D. Ziemba, Sarah Woods, and Kenneth Lee Thornhill
Atmos. Chem. Phys., 23, 8959–8977, https://doi.org/10.5194/acp-23-8959-2023, https://doi.org/10.5194/acp-23-8959-2023, 2023
Short summary
Short summary
The influence of human-produced aerosols on clouds remains one of the uncertainties in radiative forcing of Earth’s climate. Measurements of aerosol chemistry from sources around the Philippines illustrate the linkage between aerosol chemical composition and cloud droplet characteristics. Differences in aerosol chemical composition in the marine layer from biomass burning, industrial, ship-produced, and marine aerosols are shown to impact cloud microphysical structure just above cloud base.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023, https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
Short summary
We describe a new method for measuring the 3D spatial variations in water within clouds using the reflected light of the Sun viewed at multiple different angles by satellites. This is a great improvement over older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Yulan Hong, Stephen W. Nesbitt, Robert J. Trapp, and Larry Di Girolamo
Atmos. Meas. Tech., 16, 1391–1406, https://doi.org/10.5194/amt-16-1391-2023, https://doi.org/10.5194/amt-16-1391-2023, 2023
Short summary
Short summary
Deep convective updrafts form overshooting tops (OTs) when they extend into the upper troposphere and lower stratosphere. An OT often indicates hazardous weather conditions. The global distribution of OTs is useful for understanding global severe weather conditions. The Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra satellites provides 2 decades of records on the Earth–atmosphere system with stable orbits, which are used in this study to derive 20-year OT climatology.
Veronika Pörtge, Tobias Kölling, Anna Weber, Lea Volkmer, Claudia Emde, Tobias Zinner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 16, 645–667, https://doi.org/10.5194/amt-16-645-2023, https://doi.org/10.5194/amt-16-645-2023, 2023
Short summary
Short summary
In this work, we analyze polarized cloudbow observations by the airborne camera system specMACS to retrieve the cloud droplet size distribution defined by the effective radius (reff) and the effective variance (veff). Two case studies of trade-wind cumulus clouds observed during the EUREC4A field campaign are presented. The results are combined into maps of reff and veff with a very high spatial resolution (100 m × 100 m) that allow new insights into cloud microphysics.
Paolo Dandini, Céline Cornet, Renaud Binet, Laetitia Fenouil, Vadim Holodovsky, Yoav Y. Schechner, Didier Ricard, and Daniel Rosenfeld
Atmos. Meas. Tech., 15, 6221–6242, https://doi.org/10.5194/amt-15-6221-2022, https://doi.org/10.5194/amt-15-6221-2022, 2022
Short summary
Short summary
3D cloud envelope and development velocity are retrieved from realistic simulations of multi-view
CLOUD (C3IEL) images. Cloud development velocity is derived by finding matching features
between acquisitions separated by 20 s. The tie points are then mapped from image to space via 3D
reconstruction of the cloud envelope obtained from 2 simultaneous images. The retrieved cloud
topography as well as the velocities are in good agreement with the estimates obtained from the
physical models.
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary
Short summary
Satellite-retrieved cloud microphysics are widely used in climate research because of their central role in water and energy cycles. Here, we provide the first detailed investigation of retrieved cloud drop sizes from in situ and various satellite and airborne remote sensing techniques applied to real cumulus cloud fields. We conclude that the most widely used passive remote sensing method employed in climate research produces high biases of 6–8 µm (60 %–80 %) caused by 3-D radiative effects.
Birgit Heese, Athena Augusta Floutsi, Holger Baars, Dietrich Althausen, Julian Hofer, Alina Herzog, Silke Mewes, Martin Radenz, and Yoav Y. Schechner
Atmos. Chem. Phys., 22, 1633–1648, https://doi.org/10.5194/acp-22-1633-2022, https://doi.org/10.5194/acp-22-1633-2022, 2022
Short summary
Short summary
The aerosol distribution over Haifa, Israel, was measured for 2 years by a laser-based vertically resolved measurement technique called lidar. From these data, the aerosol types and their percentages of the observed aerosol mixtures were identified in terms of their size and shape. We found mostly desert dust from the surrounding deserts and sea salt from the close-by Mediterranean Sea. But aerosols from anthropogenic and industrial pollution from local and far away sources were also detected.
Cited articles
Abdoulaev, G. S., Ren, K., and Hielscher, A. H.: Optical tomography as a PDE-constrained optimization problem, Inverse Probl., 21, 1507–1530, https://doi.org/10.1088/0266-5611/21/5/002, 2005.
Ahn, E., Huang, Y., Siems, S. T., and Manton, M. J.: A Comparison of Cloud
Microphysical Properties Derived From MODIS and CALIPSO With In Situ
Measurements Over the Wintertime Southern Ocean, J. Geophys.
Res.-Atmos., 123, 11120–11140, https://doi.org/10.1029/2018JD028535, 2018.
Alexandrov, M. D., Emde, C., Van Diedenhoven, B., and Cairns, B.:
Application of Radon Transform to Multi-Angle Measurements Made by the
Research Scanning Polarimeter: A New Approach to Cloud Tomography. Part I:
Theory and Tests on Simulated Data, Front. Remote Sens., 2, 791130, https://doi.org/10.3389/frsen.2021.791130, 2021.
Arridge, S. R. and Schotland, J. C.: Optical tomography: forward and inverse
problems, Inverse Probl., 25, 123010, https://doi.org/10.1088/0266-5611/25/12/123010, 2009.
Bal, G.: Introduction to inverse problems, University of Chicago,
https://statistics.uchicago.edu/~guillaumebal/PAPERS/IntroductionInverseProblems.pdf (last access: 21 August 2023), 2012.
Bal, G. and Jollivet, A.: Stability estimates in stationary inverse transport, Inverse Probl. Imag., 2, 427–454, https://doi.org/10.3934/ipi.2008.2.427, 2008.
Bal, G., Chen, J., and Davis, A. B.: Reconstruction of cloud geometry from
high-resolution multi-angle images, Inverse Probl. Imag., 12, 261–280,
https://doi.org/10.3934/ipi.2018011, 2018.
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P.,
Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau,
A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman,
A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T.,
Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein,
M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T.,
Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative
Forcing of Climate Change, Rev. Geophys., 58, e2019RG000660,
https://doi.org/10.1029/2019RG000660, 2020.
Bitterli, B., Ravichandran, S., Müller, T., Wrenninge, M., Novák,
J., Marschner, S., and Jarosz, W.: A radiative transfer framework for
non-exponential media, ACM T. Graphic., 37, 225, https://doi.org/10.1145/3272127.3275103, 2018.
Bruegge, C. J., Chrien, N. L., Ando, R. R., Diner, D. J., Abdou, W. A.,
Helmlinger, M. C., Pilorz, S. H., and Thome, K. J.: Early validation of the
Multi-angle Imaging SpectroRadiometer (MISR) radiometric scale, IEEE
T. Geosci. Remote, 40, 1477–1492, https://doi.org/10.1109/TGRS.2002.801583, 2002.
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algorithm
for Bound Constrained Optimization, SIAM J. Sci. Comput., 16, 1190–1208,
https://doi.org/10.1137/0916069, 1995.
Cahalan, R. F., Ridgway, W., Wiscombe, W. J., Bell, T. L., and Snider, J.
B.: The Albedo of Fractal Stratocumulus Clouds, J. Atmos. Sci., 51, 2434–2455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2, 1994.
Cahalan, R. F., Oreopoulos, L., Marshak, A., Evans, K. F., Davis, A. B.,
Pincus, R., Yetzer, K. H., Mayer, B., Davies, R., Ackerman, T. P., Barker,
H. W., Clothiaux, E. E., Ellingson, R. G., Garay, M. J., Kassianov, E.,
Kinne, S., Macke, A., O'hirok, W., Partain, P. T., Prigarin, S. M., Rublev,
A. N., Stephens, G. L., Szczap, F., Takara, E. E., Várnai, T., Wen, G.,
and Zhuravleva, T. B.: THE I3RC: Bringing Together the Most Advanced
Radiative Transfer Tools for Cloudy Atmospheres, B. Am. Meteorol. Soc., 86, 1275–1294, https://doi.org/10.1175/BAMS-86-9-1275, 2005.
Cairns, B., Lacis, A. A., and Carlson, B. E.: Absorption within
Inhomogeneous Clouds and Its Parameterization in General Circulation Models,
J. Atmos. Sci., 57, 700–714,
https://doi.org/10.1175/1520-0469(2000)057<0700:AWICAI>2.0.CO;2, 2000.
Chazette, P., Totems, J., Baron, A., Flamant, C., and Bony, S.: Trade-wind clouds and aerosols characterized by airborne horizontal lidar measurements during the EUREC4A field campaign, Earth Syst. Sci. Data, 12, 2919–2936, https://doi.org/10.5194/essd-12-2919-2020, 2020.
Chen, K., Li, Q., and Wang, L.: Stability of stationary inverse transport
equation in diffusion scaling, Inverse Probl., 34, 025004,
https://doi.org/10.1088/1361-6420/aa990c, 2018.
Dandini, P., Cornet, C., Binet, R., Fenouil, L., Holodovsky, V., Y. Schechner, Y., Ricard, D., and Rosenfeld, D.: 3D cloud envelope and cloud development velocity from simulated CLOUD (C3IEL) stereo images, Atmos. Meas. Tech., 15, 6221–6242, https://doi.org/10.5194/amt-15-6221-2022, 2022.
Davis, A., Marshak, A., Wiscombe, W., and Cahalan, R.: Scale Invariance of
Liquid Water Distributions in Marine Stratocumulus. Part I: Spectral
Properties and Stationarity Issues, J. Atmos. Sci., 53,
1538–1558, https://doi.org/10.1175/1520-0469(1996)053<1538:SIOLWD>2.0.CO;2, 1996.
Davis, A., Marshak, A., Cahalan, R., and Wiscombe, W.: The Landsat Scale
Break in Stratocumulus as a Three-Dimensional Radiative Transfer Effect:
Implications for Cloud Remote Sensing, J. Atmos. Sci.,
54, 241–260, https://doi.org/10.1175/1520-0469(1997)054<0241:TLSBIS>2.0.CO;2, 1997.
Davis, A. B. and Marshak, A.: Photon propagation in heterogeneous optical
media with spatial correlations: enhanced mean-free-paths and
wider-than-exponential free-path distributions, J. Quant.
Spectrosc. Ra., 84, 3–34, https://doi.org/10.1016/S0022-4073(03)00114-6, 2004.
Davis, A. B., Marshak, A., Gerber, H., and Wiscombe, W. J.: Horizontal
structure of marine boundary layer clouds from centimeter to kilometer
scales, J. Geophys. Res.-Atmos., 104, 6123–6144,
https://doi.org/10.1029/1998JD200078, 1999.
Davis, A. B., Forster, L., Diner, D. J., and Mayer, B.: Toward Cloud
Tomography from Space using MISR and MODIS: The Physics of Image Formation
for Opaque Convective Clouds, arXiv [preprint], https://doi.org/10.48550/arXiv.2011.14537, 27 July 2021.
Delanoë, J. and Hogan, R. J.: A variational scheme for retrieving ice
cloud properties from combined radar, lidar, and infrared radiometer,
J. Geophys. Res.-Atmos., 113, D07204, https://doi.org/10.1029/2007JD009000, 2008.
De Sterck, H. and Howse, A. J. M.: Nonlinearly preconditioned L-BFGS as an
acceleration mechanism for alternating least squares with application to
tensor decomposition, Numer. Linear Algebr., 25, e2202,
https://doi.org/10.1002/nla.2202, 2018.
Di Girolamo, L., Liang, L., and Platnick, S.: A global view of
one-dimensional solar radiative transfer through oceanic water clouds,
Geophys. Res. Lett., 37, L18809, https://doi.org/10.1029/2010GL044094, 2010.
Diner, D. J., Xu, F., Garay, M. J., Martonchik, J. V., Rheingans, B. E., Geier, S., Davis, A., Hancock, B. R., Jovanovic, V. M., Bull, M. A., Capraro, K., Chipman, R. A., and McClain, S. C.: The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing, Atmos. Meas. Tech., 6, 2007–2025, https://doi.org/10.5194/amt-6-2007-2013, 2013.
Doicu, A. and Efremenko, D. S.: Linearizations of the Spherical Harmonic
Discrete Ordinate Method (SHDOM), Atmosphere, 10, 292,
https://doi.org/10.3390/atmos10060292, 2019.
Doicu, A., Doicu, A., Efremenko, D., and Trautmann, T.: Cloud tomographic
retrieval algorithms. I: Surrogate minimization method, J. Quant. Spectrosc. Ra., 277, 107954, https://doi.org/10.1016/j.jqsrt.2021.107954, 2022a.
Doicu, A., Doicu, A., Efremenko, D., and Trautmann, T.: Cloud tomographic
retrieval algorithms. II: Adjoint method, J. Quant. Spectrosc. Ra., 285, 108177, https://doi.org/10.1016/j.jqsrt.2022.108177, 2022b.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011.
Evans, K. F.: The Spherical Harmonics Discrete Ordinate Method for
Three-Dimensional Atmospheric Radiative Transfer, J. Atmos. Sci., 55, 429–446, https://doi.org/10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2, 1998.
Evans, K. F.: Spherical Harmonics Discrete Ordinate Method, University of Colorado [code], Boulder,
https://nit.coloradolinux.com/~evans/shdom/shdom.tar.gz, last access: 23 March 2023.
Ewald, F., Zinner, T., Kölling, T., and Mayer, B.: Remote sensing of cloud droplet radius profiles using solar reflectance from cloud sides – Part 1: Retrieval development and characterization, Atmos. Meas. Tech., 12, 1183–1206, https://doi.org/10.5194/amt-12-1183-2019, 2019.
Ewald, F., Groß, S., Wirth, M., Delanoë, J., Fox, S., and Mayer, B.: Why we need radar, lidar, and solar radiance observations to constrain ice cloud microphysics, Atmos. Meas. Tech., 14, 5029–5047, https://doi.org/10.5194/amt-14-5029-2021, 2021.
Eytan, E., Khain, A., Pinsky, M., Altaratz, O., Shpund, J., and Koren, I.:
Shallow Cumulus Properties as Captured by Adiabatic Fraction in
High-Resolution LES Simulations, J. Atmos. Sci., 79,
409–428, https://doi.org/10.1175/JAS-D-21-0201.1, 2022.
Fielding, M. D., Chiu, J. C., Hogan, R. J., and Feingold, G.: A novel
ensemble method for retrieving properties of warm cloud in 3-D using
ground-based scanning radar and zenith radiances, J. Geophys. Res.-Atmos., 119, 10912–10930, https://doi.org/10.1002/2014JD021742, 2014.
Forster, L., Davis, A. B., Diner, D. J., and Mayer, B.: Toward Cloud
Tomography from Space Using MISR and MODIS: Locating the “Veiled Core” in
Opaque Convective Clouds, J. Atmos. Sci., 78, 155–166,
https://doi.org/10.1175/JAS-D-19-0262.1, 2021.
Fu, D., Di Girolamo, L., Liang, L., and Zhao, G.: Regional Biases in MODIS
Marine Liquid Water Cloud Drop Effective Radius Deduced Through Fusion With
MISR, J. Geophys. Res.-Atmos., 124, 13182–13196,
https://doi.org/10.1029/2019JD031063, 2019.
Fu, D., Di Girolamo, L., Rauber, R. M., McFarquhar, G. M., Nesbitt, S. W., Loveridge, J., Hong, Y., van Diedenhoven, B., Cairns, B., Alexandrov, M. D., Lawson, P., Woods, S., Tanelli, S., Schmidt, S., Hostetler, C., and Scarino, A. J.: An evaluation of the liquid cloud droplet effective radius derived from MODIS, airborne remote sensing, and in situ measurements from CAMP2Ex, Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022, 2022.
Gao, M., Franz, B. A., Knobelspiesse, K., Zhai, P.-W., Martins, V., Burton, S., Cairns, B., Ferrare, R., Gales, J., Hasekamp, O., Hu, Y., Ibrahim, A., McBride, B., Puthukkudy, A., Werdell, P. J., and Xu, X.: Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model, Atmos. Meas. Tech., 14, 4083–4110, https://doi.org/10.5194/amt-14-4083-2021, 2021.
Gao, M., Knobelspiesse, K., Franz, B. A., Zhai, P.-W., Sayer, A. M., Ibrahim, A., Cairns, B., Hasekamp, O., Hu, Y., Martins, V., Werdell, P. J., and Xu, X.: Effective uncertainty quantification for multi-angle polarimetric aerosol remote sensing over ocean, Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022, 2022.
Guillaume, A., Kahn, B. H., Yue, Q., Fetzer, E. J., Wong, S., Manipon, G.
J., Hua, H., and Wilson, B. D.: Horizontal and Vertical Scaling of Cloud
Geometry Inferred from CloudSat Data, J. Atmos. Sci.,
75, 2187–2197, https://doi.org/10.1175/JAS-D-17-0111.1, 2018.
Hu, C.-C. and van Leeuwen, P. J.: A particle flow filter for
high-dimensional system applications, Q. J. Roy. Meteor. Soc., 147, 2352–2374, https://doi.org/10.1002/qj.4028, 2021.
Iwabuchi, H. and Hayasaka, T.: Effects of Cloud Horizontal Inhomogeneity on
the Optical Thickness Retrieved from Moderate-Resolution Satellite Data,
J. Atmos. Sci., 59, 2227–2242,
https://doi.org/10.1175/1520-0469(2002)059<2227:EOCHIO>2.0.CO;2, 2002.
Kato, S. and Marshak, A.: Solar zenith and viewing geometry-dependent errors
in satellite retrieved cloud optical thickness: Marine stratocumulus case,
J. Geophys. Res.-Atmos., 114, D01202, https://doi.org/10.1029/2008JD010579, 2009.
King, N. J. and Vaughan, G.: Using passive remote sensing to retrieve the
vertical variation of cloud droplet size in marine stratocumulus: An
assessment of information content and the potential for improved retrievals
from hyperspectral measurements, J. Geophys. Res.-Atmos., 117, D15206, https://doi.org/10.1029/2012JD017896, 2012.
Kobayashi, T.: Parameterization of Reflectivity for Broken Cloud Fields,
J. Atmos. Sci., 45, 3034–3045,
https://doi.org/10.1175/1520-0469(1988)045<3034:PORFBC>2.0.CO;2, 1988.
Kutulakos, K. N. and Seitz, S. M.: A theory of shape by space carving, in:
Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999, vol. 1, 307–314, https://doi.org/10.1109/ICCV.1999.791235, 1999.
Lebsock, M. and Su, H.: Application of active spaceborne remote sensing for
understanding biases between passive cloud water path retrievals, J. Geophys. Res.-Atmos., 119, 8962–8979, https://doi.org/10.1002/2014JD021568, 2014.
Lee, B., Di Girolamo, L., Zhao, G., and Zhan, Y.: Three-Dimensional Cloud
Volume Reconstruction from the Multi-angle Imaging SpectroRadiometer, Remote
Sens., 10, 1858, https://doi.org/10.3390/rs10111858, 2018.
Levis, A., Schechner, Y. Y., Aides, A., and Davis, A. B.: Airborne
Three-Dimensional Cloud Tomography, in: 2015 IEEE International Conference
on Computer Vision (ICCV), Santiago, Chile, 2–13 December 2015, 3379–3387, https://doi.org/10.1109/ICCV.2015.386, 2015.
Levis, A., Schechner, Y. Y., and Davis, A. B.: Multiple-Scattering
Microphysics Tomography, in: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017, 5797–5806,
https://doi.org/10.1109/CVPR.2017.614, 2017.
Levis, A., Schechner, Y. Y., Davis, A. B., and Loveridge, J.: Multi-View
Polarimetric Scattering Cloud Tomography and Retrieval of Droplet Size,
Remote Sens., 12, 2831, https://doi.org/10.3390/rs12172831, 2020.
Lewis, G. M., Austin, P. H., and Szczodrak, M.: Spatial statistics of marine
boundary layer clouds, J. Geophys. Res.-Atmos., 109, D04104,
https://doi.org/10.1029/2003JD003742, 2004.
Liang, L. and Girolamo, L. D.: A global analysis on the view-angle
dependence of plane-parallel oceanic liquid water cloud optical thickness
using data synergy from MISR and MODIS, J. Geophys. Res.-Atmos., 118, 2389–2403, https://doi.org/10.1029/2012JD018201, 2013.
Lovejoy, S., Schertzer, D., Silas, P., Tessier, Y., and Lavallee, D.: The
unified scaling model of the atmospheric dynamics and systematic analysis of
scale invariance in cloud radiances, Ann. Geophys., 11, 119–127, 1993.
Loveridge, J.: AT3D-PART2: Stochastically Generated Clouds, Zenodo [data set], https://doi.org/10.5281/zenodo.8270210, 2023.
Loveridge, J., Levis, A., Aides, A., Forster, L., and Holodovsky, V.:
Atmospheric Tomography with 3D Radiative Transfer, v4.1.2,
Zenodo [code], https://doi.org/10.5281/zenodo.7062466, 2022.
Loveridge, J., Levis, A., Di Girolamo, L., Holodovsky, V., Forster, L., Davis, A. B., and Schechner, Y. Y.: Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation, Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023, 2023a.
Loveridge, J., Levis, A., Holodovsky, V., and Forster, L.: Atmospheric Tomography with 3D Radiative Transfer, GitHub [code], https://github.com/CloudTomography/AT3D (last access: 28 March 2023), 2023b.
Marshak, A., Davis, A., Wiscombe, W., and Cahalan, R.: Radiative smoothing
in fractal clouds, J. Geophys. Res.-Atmos., 100, 26247–26261, https://doi.org/10.1029/95JD02895, 1995.
Marshak, A., Davis, A., Wiscombe, W., and Cahalan, R.: Radiative effects of
sub-mean free path liquid water variability observed in stratiform clouds,
J. Geophys. Res.-Atmos., 103, 19557–19567,
https://doi.org/10.1029/98JD01728, 1998.
Marshak, A., Platnick, S., Várnai, T., Wen, G., and Cahalan, R. F.:
Impact of three-dimensional radiative effects on satellite retrievals of
cloud droplet sizes, J. Geophys. Res.-Atmos., 111, D09207,
https://doi.org/10.1029/2005JD006686, 2006.
Martin, W., Cairns, B., and Bal, G.: Adjoint methods for adjusting
three-dimensional atmosphere and surface properties to fit
multi-angle/multi-pixel polarimetric measurements, J. Quant. Spectrosc. Ra., 144, 68–85, https://doi.org/10.1016/j.jqsrt.2014.03.030, 2014.
Martin, W. G. K. and Hasekamp, O. P.: A demonstration of adjoint methods for
multi-dimensional remote sensing of the atmosphere and surface, J. Quant. Spectrosc. Ra., 204, 215–231, https://doi.org/10.1016/j.jqsrt.2017.09.031, 2018.
Miller, D. J., Zhang, Z., Platnick, S., Ackerman, A. S., Werner, F., Cornet, C., and Knobelspiesse, K.: Comparisons of bispectral and polarimetric retrievals of marine boundary layer cloud microphysics: case studies using a LES–satellite retrieval simulator, Atmos. Meas. Tech., 11, 3689–3715, https://doi.org/10.5194/amt-11-3689-2018, 2018.
Morrison, H., van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W.,
Harrington, J. Y., Hoose, C., Korolev, A., Kumjian, M. R., Milbrandt, J. A.,
Pawlowska, H., Posselt, D. J., Prat, O. P., Reimel, K. J., Shima, S.-I., van
Diedenhoven, B., and Xue, L.: Confronting the Challenge of Modeling Cloud
and Precipitation Microphysics, J. Adv. Model. Earth Syst., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689, 2020.
Nakajima, T. and Tanaka, M.: Algorithms for radiative intensity calculations
in moderately thick atmospheres using a truncation approximation, J.
Quant. Spectrosc. Ra., 40, 51–69, https://doi.org/10.1016/0022-4073(88)90031-3, 1988.
NASA: AtmOS Tandem Stereographic Cameras Instrumentation, National Aeronautics and Space Administration, Goddard Space Flight Center,
https://aos.gsfc.nasa.gov/docs/ATMOS_Tandem_Stereographic_Cameras_210602+final+revised.pdf, last access: 8 June 2021.
Nataraja, V., Schmidt, S., Chen, H., Yamaguchi, T., Kazil, J., Feingold, G., Wolf, K., and Iwabuchi, H.: Segmentation-based multi-pixel cloud optical thickness retrieval using a convolutional neural network, Atmos. Meas. Tech., 15, 5181–5205, https://doi.org/10.5194/amt-15-5181-2022, 2022.
Niu, H., Lin, Z.-J., Tian, F., Dhamne, S., and Liu, H.: Comprehensive
investigation of three-dimensional diffuse optical tomography with depth
compensation algorithm, J. Biomed. Opt., 15, 046005,
https://doi.org/10.1117/1.3462986, 2010.
Painemal, D., Spangenberg, D., Smith Jr., W. L., Minnis, P., Cairns, B., Moore, R. H., Crosbie, E., Robinson, C., Thornhill, K. L., Winstead, E. L., and Ziemba, L.: Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign, Atmos. Meas. Tech., 14, 6633–6646, https://doi.org/10.5194/amt-14-6633-2021, 2021.
Peherstorfer, B., Willcox, K., and Gunzburger, M.: Survey of Multifidelity
Methods in Uncertainty Propagation, Inference, and Optimization, SIAM Rev.,
60, 550–591, https://doi.org/10.1137/16M1082469, 2018.
Pincus, R. and Evans, K. F.: Computational Cost and Accuracy in Calculating
Three-Dimensional Radiative Transfer: Results for New Implementations of
Monte Carlo and SHDOM, J. Atmos. Sci., 66, 3131–3146,
https://doi.org/10.1175/2009JAS3137.1, 2009.
Prigarin, S. M. and Marshak, A.: A Simple Stochastic Model for Generating
Broken Cloud Optical Depth and Cloud-Top Height Fields, J. Atmos. Sci., 66, 92–104, https://doi.org/10.1175/2008JAS2699.1, 2009.
Raveendran, T., Gupta, S., Vasu, R. M., and Roy, D.: Pseudo-time particle
filtering for diffuse optical tomography, J. Opt. Soc. Am. A, 28,
2070–2081, https://doi.org/10.1364/JOSAA.28.002070, 2011.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, World Scientific,
https://doi.org/10.1142/3171, 2000.
Ronen, R., Holodovsky, V., and Schechner, Y. Y.: Variable Imaging Projection
Cloud Scattering Tomography, IEEE T. Pattern Anal., 1–12, https://doi.org/10.1109/TPAMI.2022.3195920, 2022.
Schilling, K., Schechner, Y. Y., and Koren, I.: CloudCT – Computed
Tomography Of Clouds By A Small Satellite Formation, 12th IAA symposium on
Small Satellites for Earth Observation, Berlin, Germany, 6–10 May 2019,
https://www.cloudct.space/_files/ugd/aef793_e2334d0332014022aeb4a5891ff12e92.pdf
(last access: 20 March 2023), 2019.
Schmetz, J.: On the parameterization of the radiative properties of broken
clouds, Tellus A, 36, 417–432, https://doi.org/10.3402/tellusa.v36i5.11644, 1984.
Seiz, G. and Davies, R.: Reconstruction of cloud geometry from multi-view
satellite images, Remote Sens. Environ., 100, 143–149,
https://doi.org/10.1016/j.rse.2005.09.016, 2006.
Sherwood, S. C., Bony, S., and Dufresne, J.-L.: Spread in model climate
sensitivity traced to atmospheric convective mixing, Nature, 505, 37–42,
https://doi.org/10.1038/nature12829, 2014.
Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M.,
Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J.,
Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L.,
Hausfather, Z., von der Heydt, A. S., Knutti, R., Mauritsen, T., Norris, J.
R., Proistosescu, C., Rugenstein, M., Schmidt, G. A., Tokarska, K. B., and
Zelinka, M. D.: An Assessment of Earth's Climate Sensitivity Using Multiple
Lines of Evidence, Rev. Geophys., 58, e2019RG000678,
https://doi.org/10.1029/2019RG000678, 2020.
Shi, H.-J. M., Xie, Y., Byrd, R., and Nocedal, J.: A Noise-Tolerant
Quasi-Newton Algorithm for Unconstrained Optimization, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.04352, 9 September 2021.
Tarvainen, T., Kolehmainen, V., Pulkkinen, A., Vauhkonen, M., Schweiger, M.,
Arridge, S. R., and Kaipio, J. P.: An approximation error approach for
compensating for modelling errors between the radiative transfer equation
and the diffusion approximation in diffuse optical tomography, Inverse Probl., 26, 015005, https://doi.org/10.1088/0266-5611/26/1/015005, 2009.
Tian, F., Niu, H., Khadka, S., Lin, Z.-J., and Liu, H.: Algorithmic depth
compensation improves quantification and noise suppression in functional
diffuse optical tomography, Biomed. Opt. Express, 1, 441–452,
https://doi.org/10.1364/BOE.1.000441, 2010.
Tzabari, M., Holodovsky, V., Shubi, O., Eytan, E., Koren, I., and Schechner,
Y. Y.: Settings for Spaceborne 3-D Scattering Tomography of Liquid-Phase
Clouds by the CloudCT Mission, IEEE T. Geosci. Remote, 60, 1–16, https://doi.org/10.1109/TGRS.2022.3198525, 2022.
van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., and Reich,
S.: Particle filters for high-dimensional geoscience applications: A review,
Q. J. Roy. Meteor. Soc., 145, 2335–2365, https://doi.org/10.1002/qj.3551, 2019.
Veikherman, D., Aides, A., Schechner, Y. Y., and Levis, A.: Clouds in the
Cloud, in: Computer Vision – ACCV 2014, Springer, Cham, 659–674,
https://doi.org/10.1007/978-3-319-16817-3_43, 2015.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M.,
Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: SciPy 1.0: fundamental
algorithms for scientific computing in Python, Nat. Methods, 17, 261–272,
https://doi.org/10.1038/s41592-019-0686-2, 2020.
Weinman, J. A. and Harshvardhan: Solar reflection from a regular array of
horizontally finite clouds, Appl. Optics, 21, 2940–2944,
https://doi.org/10.1364/AO.21.002940, 1982.
Wiscombe, W. J.: The Delta–M Method: Rapid Yet Accurate Radiative Flux
Calculations for Strongly Asymmetric Phase Functions, J. Atmos. Sci., 34, 1408–1422, https://doi.org/10.1175/1520-0469(1977)034<1408:TDMRYA>2.0.CO;2, 1977.
Xu, Z., Mace, G. G., and Posselt, D. J.: Impact of Rain on Retrieved Warm
Cloud Properties Using Visible and Near-Infrared Reflectances Using Markov
Chain Monte Carlo Techniques, IEEE T. Geosci. Remote, 60, 1–10, https://doi.org/10.1109/TGRS.2022.3208007, 2022.
Yang, Y. and Di Girolamo, L.: Impacts of 3-D radiative effects on satellite
cloud detection and their consequences on cloud fraction and aerosol optical
depth retrievals, J. Geophys. Res.-Atmos., 113, D04213,
https://doi.org/10.1029/2007JD009095, 2008.
Zhang, Z., Ackerman, A. S., Feingold, G., Platnick, S., Pincus, R., and Xue,
H.: Effects of cloud horizontal inhomogeneity and drizzle on remote sensing
of cloud droplet effective radius: Case studies based on large-eddy
simulations, J. Geophys. Res.-Atmos., 117, D19208,
https://doi.org/10.1029/2012JD017655, 2012.
Zhao, G. and Di Girolamo, L.: Statistics on the macrophysical properties of
trade wind cumuli over the tropical western Atlantic, J. Geophys. Res.-Atmos., 112, D10204, https://doi.org/10.1029/2006JD007371, 2007.
Zhao, H. and Zhong, Y.: Instability of an Inverse Problem for the Stationary
Radiative Transport Near the Diffusion Limit, SIAM J. Math. Anal., 51,
3750–3768, https://doi.org/10.1137/18M1222582, 2019.
Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.: Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound-constrained optimization, ACM
Trans. Math. Softw., 23, 550–560, https://doi.org/10.1145/279232.279236, 1997.
Short summary
We test a new method for measuring the 3D spatial variations of water within clouds, using measurements of reflections of the Sun's light observed at multiple angles by satellites. This is a great improvement on older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
We test a new method for measuring the 3D spatial variations of water within clouds, using...