Articles | Volume 17, issue 3
https://doi.org/10.5194/amt-17-943-2024
https://doi.org/10.5194/amt-17-943-2024
Research article
 | Highlight paper
 | 
08 Feb 2024
Research article | Highlight paper |  | 08 Feb 2024

Design and rocket deployment of a trackable pseudo-Lagrangian drifter-based meteorological probe into the Lawrence/Linwood EF4 tornado and mesocyclone on 28 May 2019

Reed Timmer, Mark Simpson, Sean Schofer, and Curtis Brooks

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Instruments and Platforms
A comparative analysis of in situ measurements of high-altitude cirrus in the tropics
Francesco Cairo, Martina Krämer, Armin Afchine, Guido Di Donfrancesco, Luca Di Liberto, Sergey Khaykin, Lorenza Lucaferri, Valentin Mitev, Max Port, Christian Rolf, Marcel Snels, Nicole Spelten, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 16, 4899–4925, https://doi.org/10.5194/amt-16-4899-2023,https://doi.org/10.5194/amt-16-4899-2023, 2023
Short summary
In situ ground-based mobile measurement of lightning events above central Europe
Jakub Kákona, Jan Mikeš, Iva Ambrožová, Ondřej Ploc, Olena Velychko, Lembit Sihver, and Martin Kákona
Atmos. Meas. Tech., 16, 547–561, https://doi.org/10.5194/amt-16-547-2023,https://doi.org/10.5194/amt-16-547-2023, 2023
Short summary
A phase separation inlet for droplets, ice residuals, and interstitial aerosol particles
Libby Koolik, Michael Roesch, Carmen Dameto de Espana, Christopher Nathan Rapp, Lesly J. Franco Deloya, Chuanyang Shen, A. Gannet Hallar, Ian B. McCubbin, and Daniel J. Cziczo
Atmos. Meas. Tech., 15, 3213–3222, https://doi.org/10.5194/amt-15-3213-2022,https://doi.org/10.5194/amt-15-3213-2022, 2022
Short summary
Simulation and field campaign evaluation of an optical particle counter on a fixed-wing UAV
Joseph Girdwood, Warren Stanley, Chris Stopford, and David Brus
Atmos. Meas. Tech., 15, 2061–2076, https://doi.org/10.5194/amt-15-2061-2022,https://doi.org/10.5194/amt-15-2061-2022, 2022
Short summary
Cloud microphysical measurements at a mountain observatory: comparison between shadowgraph imaging and phase Doppler interferometry
Moein Mohammadi, Jakub L. Nowak, Guus Bertens, Jan Moláček, Wojciech Kumala, and Szymon P. Malinowski
Atmos. Meas. Tech., 15, 965–985, https://doi.org/10.5194/amt-15-965-2022,https://doi.org/10.5194/amt-15-965-2022, 2022
Short summary

Cited articles

Augustin, A., Yi, J., Clausen, T., and Townsley, W.: A Study of LoRa: Long Range & Low Power Networks for the Internet of Things, Sensors, 16, 1466, https://doi.org/10.3390/s16091466, 2016. a
Bartos, E. A., Markowski, P. M., and Richardson, Y. P.: Three-Dimensional Thermodynamic Observations in Supercell Thunderstorms from Swarms of Balloon-Borne Sondes, Mon. Weather Rev., 150, 1689–1723, https://doi.org/10.1175/MWR-D-21-0122.1, 2022. a, b, c
Beck, J. and Weiss, C.: An assessment of low-level baroclinity and vorticity within a simulated supercell, Mon. Weather Rev., 141, 649–669, 2013. a, b
Bedard Jr., A. and Ramzy, C.: Surface meteorological observations in severe thunderstorms. Part I: Design details of TOTO, J. Appl. Meteorol. Clim., 22, 911–918, https://doi.org/10.1175/1520-0450(1983)022<0911:SMOIST>2.0.CO;2, 1983. a
Blair, S. F., Deroche, D. R., and Pietrycha, A. E.: In situ observations of the 21 April 2007 Tulia, Texas tornado, E-Journal of Severe Storms Meteorology, 3, 1–27, https://doi.org/10.55599/ejssm.v3i3.16, 2008. a, b, c, d, e
Download
Executive editor
Tornadoes are having impact on peoples live and are in a general interest.
Short summary
This work discusses a probe launched by a model rocket into an EF4 tornado and is the first time an airborne probe has directly sampled a tornado. The rocket deployed a parachuted probe recording wind speeds of 306 km h-1 in addition to temperature, humidity, and pressure deficit. Data from the probe were sent in real time to a receiver in an armored vehicle. Taking measurements directly from inside tornadoes provides new data about this violent phenomenon.