Articles | Volume 9, issue 9
https://doi.org/10.5194/amt-9-4615-2016
https://doi.org/10.5194/amt-9-4615-2016
Research article
 | 
20 Sep 2016
Research article |  | 20 Sep 2016

Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere

Tobias Zinner, Petra Hausmann, Florian Ewald, Luca Bugliaro, Claudia Emde, and Bernhard Mayer

Related authors

Validation of a camera-based intra-hour irradiance nowcasting model using synthetic cloud data
Philipp Gregor, Tobias Zinner, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 16, 3257–3271, https://doi.org/10.5194/amt-16-3257-2023,https://doi.org/10.5194/amt-16-3257-2023, 2023
Short summary
Influence of cloud microphysics schemes on weather model predictions of heavy precipitation
Gregor Köcher, Tobias Zinner, and Christoph Knote
Atmos. Chem. Phys., 23, 6255–6269, https://doi.org/10.5194/acp-23-6255-2023,https://doi.org/10.5194/acp-23-6255-2023, 2023
Short summary
High-spatial-resolution retrieval of cloud droplet size distribution from polarized observations of the cloudbow
Veronika Pörtge, Tobias Kölling, Anna Weber, Lea Volkmer, Claudia Emde, Tobias Zinner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 16, 645–667, https://doi.org/10.5194/amt-16-645-2023,https://doi.org/10.5194/amt-16-645-2023, 2023
Short summary
Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events
Eleni Tetoni, Florian Ewald, Martin Hagen, Gregor Köcher, Tobias Zinner, and Silke Groß
Atmos. Meas. Tech., 15, 3969–3999, https://doi.org/10.5194/amt-15-3969-2022,https://doi.org/10.5194/amt-15-3969-2022, 2022
Short summary
Evaluation of convective cloud microphysics in numerical weather prediction models with dual-wavelength polarimetric radar observations: methods and examples
Gregor Köcher, Tobias Zinner, Christoph Knote, Eleni Tetoni, Florian Ewald, and Martin Hagen
Atmos. Meas. Tech., 15, 1033–1054, https://doi.org/10.5194/amt-15-1033-2022,https://doi.org/10.5194/amt-15-1033-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023,https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Particle inertial effects on radar Doppler spectra simulation
Zeen Zhu, Pavlos Kollias, and Fan Yang
Atmos. Meas. Tech., 16, 3727–3737, https://doi.org/10.5194/amt-16-3727-2023,https://doi.org/10.5194/amt-16-3727-2023, 2023
Short summary
Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): the ATLID FeatureMask (A-FM) product
Gerd-Jan van Zadelhoff, David P. Donovan, and Ping Wang
Atmos. Meas. Tech., 16, 3631–3651, https://doi.org/10.5194/amt-16-3631-2023,https://doi.org/10.5194/amt-16-3631-2023, 2023
Short summary
A unified synergistic retrieval of clouds, aerosols, and precipitation from EarthCARE: the ACM-CAP product
Shannon L. Mason, Robin J. Hogan, Alessio Bozzo, and Nicola L. Pounder
Atmos. Meas. Tech., 16, 3459–3486, https://doi.org/10.5194/amt-16-3459-2023,https://doi.org/10.5194/amt-16-3459-2023, 2023
Short summary
Incorporating EarthCARE observations into a multi-lidar cloud climate record: the ATLID (Atmospheric Lidar) cloud climate product
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023,https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary

Cited articles

Anderson, G., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E.: AFGL atmospheric constituent profiles (0–120 km), Hanscom AFB, MA: Optical Physics Division, Air Force Geophysics Laboratory,[1986]. AFGL-TR; 86-0110, US Air Force Geophysics Laboratory, Optical Physics Division, 1, 1986.
Baldridge, A., Hook, S., Grove, C., and Rivera, G.: The ASTER spectral library version 2.0, Remote Sens. Environ., 113, 711–715, 2009.
Baran, A. J.: From the single-scattering properties of ice crystals to climate prediction: A way forward, Atmos. Res., 112, 45–69, 2012.
Barnard, J., Long, C., Kassianov, E., McFarlane, S., Comstock, J., Freer, M., and McFarquhar, G.: Development and evaluation of a simple algorithm to find cloud optical depth with emphasis on thin ice clouds, The Open Atmospheric Science Journal, 2, 46–55, 2008.
Baum, B., Heymsfield, A., Yang, P., and Bedka, S.: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models, J. Appl. Meteorol., 44, 1885–1895, 2005.
Download
Short summary
A new retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from transmittance measurements is presented. A visible range spectral slope is used to resolve the transmittance optical thickness ambiguity. Retrieval sensitivity to ice crystal habit, aerosol, albedo, sensor accuracy and lookup table interpolation is presented as well as an application of the method and comparison to satellite products for 2 days.