Articles | Volume 9, issue 11
https://doi.org/10.5194/amt-9-5523-2016
https://doi.org/10.5194/amt-9-5523-2016
Research article
 | 
21 Nov 2016
Research article |  | 21 Nov 2016

Inferring 222Rn soil fluxes from ambient 222Rn activity and eddy covariance measurements of CO2

Sander van der Laan, Swagath Manohar, Alex Vermeulen, Fred Bosveld, Harro Meijer, Andrew Manning, Michiel van der Molen, and Ingrid van der Laan-Luijkx

Related authors

Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for inverse modelling
R. Locatelli, P. Bousquet, F. Hourdin, M. Saunois, A. Cozic, F. Couvreux, J.-Y. Grandpeix, M.-P. Lefebvre, C. Rio, P. Bergamaschi, S. D. Chambers, U. Karstens, V. Kazan, S. van der Laan, H. A. J. Meijer, J. Moncrieff, M. Ramonet, H. A. Scheeren, C. Schlosser, M. Schmidt, A. Vermeulen, and A. G. Williams
Geosci. Model Dev., 8, 129–150, https://doi.org/10.5194/gmd-8-129-2015,https://doi.org/10.5194/gmd-8-129-2015, 2015
Comparison of continuous in situ CO2 observations at Jungfraujoch using two different measurement techniques
M. F. Schibig, M. Steinbacher, B. Buchmann, I. T. van der Laan-Luijkx, S. van der Laan, S. Ranjan, and M. C. Leuenberger
Atmos. Meas. Tech., 8, 57–68, https://doi.org/10.5194/amt-8-57-2015,https://doi.org/10.5194/amt-8-57-2015, 2015
Simulating the integrated summertime Δ14CO2 signature from anthropogenic emissions over Western Europe
D. Bozhinova, M. K. van der Molen, I. R. van der Velde, M. C. Krol, S. van der Laan, H. A. J. Meijer, and W. Peters
Atmos. Chem. Phys., 14, 7273–7290, https://doi.org/10.5194/acp-14-7273-2014,https://doi.org/10.5194/acp-14-7273-2014, 2014
TransCom N2O model inter-comparison – Part 2: Atmospheric inversion estimates of N2O emissions
R. L. Thompson, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, P. K. Patra, P. Bergamaschi, F. Chevallier, E. Dlugokencky, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, A. Vermeulen, Y. Tohjima, A. Jordan, L. Haszpra, M. Steinbacher, S. Van der Laan, T. Aalto, F. Meinhardt, M. E. Popa, J. Moncrieff, and P. Bousquet
Atmos. Chem. Phys., 14, 6177–6194, https://doi.org/10.5194/acp-14-6177-2014,https://doi.org/10.5194/acp-14-6177-2014, 2014

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Toward on-demand measurements of greenhouse gas emissions using an uncrewed aircraft AirCore system
Zihan Zhu, Javier González-Rocha, Yifan Ding, Isis Frausto-Vicencio, Sajjan Heerah, Akula Venkatram, Manvendra Dubey, Don Collins, and Francesca M. Hopkins
Atmos. Meas. Tech., 17, 3883–3895, https://doi.org/10.5194/amt-17-3883-2024,https://doi.org/10.5194/amt-17-3883-2024, 2024
Short summary
Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network Technologies) study
Sebastian Diez, Stuart Lacy, Hugh Coe, Josefina Urquiza, Max Priestman, Michael Flynn, Nicholas Marsden, Nicholas A. Martin, Stefan Gillott, Thomas Bannan, and Pete M. Edwards
Atmos. Meas. Tech., 17, 3809–3827, https://doi.org/10.5194/amt-17-3809-2024,https://doi.org/10.5194/amt-17-3809-2024, 2024
Short summary
In-flight characterization of a compact airborne quantum cascade laser absorption spectrometer
Linda Ort, Lenard Lukas Röder, Uwe Parchatka, Rainer Königstedt, Daniel Crowley, Frank Kunz, Ralf Wittkowski, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 17, 3553–3565, https://doi.org/10.5194/amt-17-3553-2024,https://doi.org/10.5194/amt-17-3553-2024, 2024
Short summary
Full characterization and calibration of a transfer standard monitor for atmospheric radon measurements
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024,https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Observing low-altitude features in ozone concentrations in a shoreline environment via uncrewed aerial systems
Josie K. Radtke, Benjamin N. Kies, Whitney A. Mottishaw, Sydney M. Zeuli, Aidan T. H. Voon, Kelly L. Koerber, Grant W. Petty, Michael P. Vermeuel, Timothy H. Bertram, Ankur R. Desai, Joseph P. Hupy, R. Bradley Pierce, Timothy J. Wagner, and Patricia A. Cleary
Atmos. Meas. Tech., 17, 2833–2847, https://doi.org/10.5194/amt-17-2833-2024,https://doi.org/10.5194/amt-17-2833-2024, 2024
Short summary

Cited articles

Arnold, D., Vargas, A., Vermeulen, A. T., Verheggen, B., and Seibert, P.: Analysis of radon origin by backward atmospheric transport modelling, Atmos. Environ., 44, 494–502, https://doi.org/10.1016/j.atmosenv.2009.11.003, 2010.
Biraud, S., Ciais, P., Ramonet, M., Simmonds, P., Kazan, V., Monfray, P., O'Doherty, S., Spain, T. G., and Jennings, S. G.: European greenhouse gas emissions estimated from continuous atmospheric measurements and 222Radon at Mace Head, Ireland, J. Geophys. Res.-Atmos., 105, 1351–1366, 2000.
Cesar: Data from Cabauw station, available at: http://www.cesar-database.nl/, last access: 17 November 2016.
Chevillard, A., Ciais, P., Karstens, U., Heimann, M., Schmidt, M., Levin, I., Jacob, D., Podzun, R., Kazan, V., Sartorius, H., and Weingartner, E.: Transport of 222Rn using the regional model REMO: a detailed comparison with measurements over Europe, Tellus B, 54, 850–871, https://doi.org/10.3402/tellusb.v54i5.16735, 2002.
Download
Short summary
A new methodology is presented to estimate regional-scale surface fluxes of 222Rn. 222Rn is an increasingly important trace gas which is used to calculate regional-scale greenhouse gas emissions and to validate atmospheric transport models. We tested our method at two atmospheric research stations in the Netherlands and compared our results with measurements from accumulation chambers and two recently published 222Rn soil flux maps for Europe.