Articles | Volume 10, issue 3
https://doi.org/10.5194/amt-10-1079-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/amt-10-1079-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Assessment of snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network
Samuel T. Buisán
CORRESPONDING AUTHOR
Delegación Territorial de AEMET (Spanish State Meteorological
Agency) en Aragón, Paseo del Canal 17, Zaragoza, 50007, Spain
Michael E. Earle
Environment and Climate Change Canada, Meteorological Service of
Canada, Observing Systems and Engineering, Dartmouth, NS, Canada
José Luís Collado
Delegación Territorial de AEMET (Spanish State Meteorological
Agency) en Aragón, Paseo del Canal 17, Zaragoza, 50007, Spain
John Kochendorfer
National Oceanic and Atmospheric Administration, Air Resources
Laboratory, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN,
USA
Javier Alastrué
Delegación Territorial de AEMET (Spanish State Meteorological
Agency) en Aragón, Paseo del Canal 17, Zaragoza, 50007, Spain
Mareile Wolff
Norwegian Meteorological institute, Oslo, Norway
Craig D. Smith
Environment and Climate Change Canada, Climate Research Division, 11 Innovation Blvd, Saskatoon, SK, Canada
Juan I. López-Moreno
Instituto Pirenaico de Ecología, CSIC (Spanish Research
Council), Campus de Aula Dei, P.O. Box 202, Zaragoza 50080, Spain
Related authors
Craig D. Smith, Amber Ross, John Kochendorfer, Michael E. Earle, Mareile Wolff, Samuel Buisán, Yves-Alain Roulet, and Timo Laine
Hydrol. Earth Syst. Sci., 24, 4025–4043, https://doi.org/10.5194/hess-24-4025-2020, https://doi.org/10.5194/hess-24-4025-2020, 2020
Short summary
Short summary
During the World Meteorological Organization Solid Precipitation Intercomparison Experiment (SPICE), transfer functions were developed to adjust automated gauge measurements of solid precipitation for systematic bias due to wind. The transfer functions were developed by combining data from eight sites, attempting to make them more universally applicable in a range of climates. This analysis is an assessment of the performance of those transfer functions, using data collected when SPICE ended.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018, https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Short summary
Due to the effects of wind, precipitation gauges typically underestimate the amount of precipitation that occurs as snow. Measurements recorded during a World Meteorological Organization intercomparison of precipitation gauges were used to evaluate and improve the adjustments that are available to address this issue. Adjustments for specific types of precipitation gauges and wind shields were tested and recommended.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Samuel Buisan, Timo Laine, Gyuwon Lee, Jose Luis C. Aceituno, Javier Alastrué, Ketil Isaksen, Tilden Meyers, Ragnar Brækkan, Scott Landolt, Al Jachcik, and Antti Poikonen
Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, https://doi.org/10.5194/hess-21-3525-2017, 2017
Short summary
Short summary
Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.
Kyaw Tha Paw U, Mary Rose Mangan, Jilmarie Stephens, Kosana Suvočarev, Jenae' Clay, Olmo Guerrero Medina, Emma Ware, Amanda Kerr-Munslow, James McGregor, John Kochendorfer, Megan McAuliffe, and Megan Metz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-152, https://doi.org/10.5194/amt-2024-152, 2024
Preprint under review for AMT
Short summary
Short summary
Sonic anemometers measure wind velocity in three dimensions. It is used worldwide to help assess the trace gas exchange, critical to understanding climate change. However, their physical framework interferes with the flow they measure. We present a new way to correct measurements from sonic anemometers of several types. The method uses measurements of vertical wind velocity and other turbulent velocities, compares their ratios, and from this yields correction factors for sonic anemometers.
Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, and Vegard Nilsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2625, https://doi.org/10.5194/egusphere-2024-2625, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present a novel method for classifying rain and snow by combining data from Commercial Microwave Links (CMLs) with weather radar. We compare this to a reference method using dew point temperature for precipitation type classification. Evaluations with nearby disdrometers show that CMLs improve the classification of dry snow and rainfall, outperforming the reference method.
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1770, https://doi.org/10.5194/egusphere-2024-1770, 2024
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (Central-Western Greenland). By > 2070 glacier mass loss may double the rate from the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
Erlend Øydvin, Maximilian Graf, Christian Chwala, Mareile Astrid Wolff, Nils-Otto Kitterød, and Vegard Nilsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-647, https://doi.org/10.5194/egusphere-2024-647, 2024
Short summary
Short summary
Two simple neural networks are trained to detect rainfall events using signal loss from commercial microwave links. Whereas existing rainfall event detection methods have focused on hourly resolution reference data, this study uses weather radar and rain gauges with 5 minutes and 1 minute temporal resolution respectively. Our results show that the developed neural networks can detect rainfall events with a higher temporal precision than existing methods.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
John Kochendorfer, Tilden P. Meyers, Mark E. Hall, Scott D. Landolt, Justin Lentz, and Howard J. Diamond
Atmos. Meas. Tech., 16, 5647–5657, https://doi.org/10.5194/amt-16-5647-2023, https://doi.org/10.5194/amt-16-5647-2023, 2023
Short summary
Short summary
A new wind shield has been designed to reduce the effects of precipitation gauge undercatch. Tested at three separate sites, it compared well to a well-established refence-quality precipitation wind shield. The new wind shield is smaller and more durable than other reference-quality shields, and it was designed for use in operational weather and climate networks.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Josep Bonsoms, Juan Ignacio López-Moreno, and Esteban Alonso-González
The Cryosphere, 17, 1307–1326, https://doi.org/10.5194/tc-17-1307-2023, https://doi.org/10.5194/tc-17-1307-2023, 2023
Short summary
Short summary
This work analyzes the snow response to temperature and precipitation in the Pyrenees. During warm and wet seasons, seasonal snow depth is expected to be reduced by −37 %, −34 %, and −27 % per degree Celsius at low-, mid-, and high-elevation areas, respectively. The largest snow reductions are anticipated at low elevations of the eastern Pyrenees. Results anticipate important impacts on the nearby ecological and socioeconomic systems.
Miguel Bartolomé, Gérard Cazenave, Marc Luetscher, Christoph Spötl, Fernando Gázquez, Ánchel Belmonte, Alexandra V. Turchyn, Juan Ignacio López-Moreno, and Ana Moreno
The Cryosphere, 17, 477–497, https://doi.org/10.5194/tc-17-477-2023, https://doi.org/10.5194/tc-17-477-2023, 2023
Short summary
Short summary
In this work we study the microclimate and the geomorphological features of Devaux ice cave in the Central Pyrenees. The research is based on cave monitoring, geomorphology, and geochemical analyses. We infer two different thermal regimes. The cave is impacted by flooding in late winter/early spring when the main outlets freeze, damming the water inside. Rock temperatures below 0°C and the absence of drip water indicate frozen rock, while relict ice formations record past damming events.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Craig D. Smith, Eva Mekis, Megan Hartwell, and Amber Ross
Earth Syst. Sci. Data, 14, 5253–5265, https://doi.org/10.5194/essd-14-5253-2022, https://doi.org/10.5194/essd-14-5253-2022, 2022
Short summary
Short summary
It is well understood that precipitation gauges underestimate the measurement of solid precipitation (snow) as a result of systematic bias caused by wind. Relationships between the wind speed and gauge catch efficiency of solid precipitation have been previously established and are applied to the hourly precipitation measurements made between 2001 and 2019 in the automated Environment and Climate Change Canada observation network. The adjusted data are available for download and use.
Jeffery Hoover, Michael E. Earle, Paul I. Joe, and Pierre E. Sullivan
Hydrol. Earth Syst. Sci., 25, 5473–5491, https://doi.org/10.5194/hess-25-5473-2021, https://doi.org/10.5194/hess-25-5473-2021, 2021
Short summary
Short summary
Transfer functions with dependence on wind speed and precipitation fall velocity are evaluated alongside transfer functions with wind speed and temperature dependence for unshielded precipitation gauges. The transfer functions with fall velocity dependence reduced the RMSE of unshielded gauge measurements relative to the functions based on wind speed and temperature, demonstrating the importance of fall velocity for precipitation gauge collection efficiency and transfer functions.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Jeffery Hoover, Michael E. Earle, and Paul I. Joe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-554, https://doi.org/10.5194/hess-2020-554, 2020
Revised manuscript has not been submitted
Short summary
Short summary
Transfer functions with dependence on wind speed and precipitation fall velocity are evaluated alongside transfer functions with wind speed and temperature dependence for unshielded precipitation gauges. The transfer functions with fall velocity dependence reduced the RMSE of unshielded gauge measurements relative to the functions based on wind speed and temperature, demonstrating the importance of fall velocity for precipitation gauge collection efficiency and transfer functions.
Craig D. Smith, Amber Ross, John Kochendorfer, Michael E. Earle, Mareile Wolff, Samuel Buisán, Yves-Alain Roulet, and Timo Laine
Hydrol. Earth Syst. Sci., 24, 4025–4043, https://doi.org/10.5194/hess-24-4025-2020, https://doi.org/10.5194/hess-24-4025-2020, 2020
Short summary
Short summary
During the World Meteorological Organization Solid Precipitation Intercomparison Experiment (SPICE), transfer functions were developed to adjust automated gauge measurements of solid precipitation for systematic bias due to wind. The transfer functions were developed by combining data from eight sites, attempting to make them more universally applicable in a range of climates. This analysis is an assessment of the performance of those transfer functions, using data collected when SPICE ended.
Amber Ross, Craig D. Smith, and Alan Barr
Atmos. Meas. Tech., 13, 2979–2994, https://doi.org/10.5194/amt-13-2979-2020, https://doi.org/10.5194/amt-13-2979-2020, 2020
Short summary
Short summary
The raw data derived from most automated accumulating precipitation gauges often suffer from non-precipitation-related fluctuations in the measurement of the gauge bucket weights from which the precipitation amount is determined. This noise can be caused by electrical interference, mechanical noise, and evaporation. This paper presents an automated filtering technique that builds on the principle of iteratively balancing noise to produce a clean precipitation time series.
Craig D. Smith, Daqing Yang, Amber Ross, and Alan Barr
Earth Syst. Sci. Data, 11, 1337–1347, https://doi.org/10.5194/essd-11-1337-2019, https://doi.org/10.5194/essd-11-1337-2019, 2019
Short summary
Short summary
During and following the WMO Solid Precipitation Inter-Comparison Experiment (SPICE), winter (2013–2017) precipitation intercomparison data sets were collected at two test sites in Saskatchewan: Caribou Creek in the southern boreal forest and Bratt's Lake on the prairies. Precipitation was measured by the WMO automated reference and can be compared to measurements made by gauge configurations commonly used in Canada to examine issues with systematic bias.
Brett Woelber, Marco P. Maneta, Joel Harper, Kelsey G. Jencso, W. Payton Gardner, Andrew C. Wilcox, and Ignacio López-Moreno
Hydrol. Earth Syst. Sci., 22, 4295–4310, https://doi.org/10.5194/hess-22-4295-2018, https://doi.org/10.5194/hess-22-4295-2018, 2018
Short summary
Short summary
The hydrology of high-elevation headwaters in midlatitudes is typically dominated by snow processes, which are very sensitive to changes in energy inputs at the top of the snowpack. We present a data analyses that reveal how snowmelt and transpiration waves induced by the diurnal solar cycle generate water pressure fluctuations that propagate through the snowpack–hillslope–stream system. Changes in diurnal energy inputs alter these pressure cycles with potential ecohydrological consequences.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018, https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Short summary
Due to the effects of wind, precipitation gauges typically underestimate the amount of precipitation that occurs as snow. Measurements recorded during a World Meteorological Organization intercomparison of precipitation gauges were used to evaluate and improve the adjustments that are available to address this issue. Adjustments for specific types of precipitation gauges and wind shields were tested and recommended.
Esteban Alonso-González, J. Ignacio López-Moreno, Simon Gascoin, Matilde García-Valdecasas Ojeda, Alba Sanmiguel-Vallelado, Francisco Navarro-Serrano, Jesús Revuelto, Antonio Ceballos, María Jesús Esteban-Parra, and Richard Essery
Earth Syst. Sci. Data, 10, 303–315, https://doi.org/10.5194/essd-10-303-2018, https://doi.org/10.5194/essd-10-303-2018, 2018
Short summary
Short summary
We present a new daily gridded snow depth and snow water equivalent database over the Iberian Peninsula from 1980 to 2014 structured in common elevation bands. The data have proved their consistency with in situ observations and remote sensing data (MODIS). The presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism and risk management.
Jesús Revuelto, Cesar Azorin-Molina, Esteban Alonso-González, Alba Sanmiguel-Vallelado, Francisco Navarro-Serrano, Ibai Rico, and Juan Ignacio López-Moreno
Earth Syst. Sci. Data, 9, 993–1005, https://doi.org/10.5194/essd-9-993-2017, https://doi.org/10.5194/essd-9-993-2017, 2017
Short summary
Short summary
This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner for certain dates and (iii) time-lapse images showing the evolution of the snow-covered area.
Craig D. Smith, Garth van der Kamp, Lauren Arnold, and Randy Schmidt
Hydrol. Earth Syst. Sci., 21, 5263–5272, https://doi.org/10.5194/hess-21-5263-2017, https://doi.org/10.5194/hess-21-5263-2017, 2017
Short summary
Short summary
This research provides an example of how groundwater pressures measured in deep observation wells can be used as a reliable estimate, and perhaps as a reference, for event-based precipitation. Changes in loading at the surface due to the weight of precipitation are transferred to the groundwater formation and can be measured in the observation well. Correlations in precipitation measurements made with the
geolysimeterand the co-located sheltered precipitation gauge are high.
David S. Sayres, Ronald Dobosy, Claire Healy, Edward Dumas, John Kochendorfer, Jason Munster, Jordan Wilkerson, Bruce Baker, and James G. Anderson
Atmos. Chem. Phys., 17, 8619–8633, https://doi.org/10.5194/acp-17-8619-2017, https://doi.org/10.5194/acp-17-8619-2017, 2017
Short summary
Short summary
Arctic temperatures have risen faster than the global average, causing the depth of melting of the frozen ground to increase. Previously frozen organic carbon, once exposed to air, water, and microbes, is turned into carbon dioxide and methane, both of which are important greenhouse gases. Due to the large and varied surface area of the Arctic and the difficulty of making measurements there we use a low flying aircraft (<25 m) to measure the amount of methane released from different regions.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Samuel Buisan, Timo Laine, Gyuwon Lee, Jose Luis C. Aceituno, Javier Alastrué, Ketil Isaksen, Tilden Meyers, Ragnar Brækkan, Scott Landolt, Al Jachcik, and Antti Poikonen
Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, https://doi.org/10.5194/hess-21-3525-2017, 2017
Short summary
Short summary
Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.
John Kochendorfer, Roy Rasmussen, Mareile Wolff, Bruce Baker, Mark E. Hall, Tilden Meyers, Scott Landolt, Al Jachcik, Ketil Isaksen, Ragnar Brækkan, and Ronald Leeper
Hydrol. Earth Syst. Sci., 21, 1973–1989, https://doi.org/10.5194/hess-21-1973-2017, https://doi.org/10.5194/hess-21-1973-2017, 2017
Short summary
Short summary
Snowfall measurements recorded using precipitation gauges are subject to significant underestimation due to the effects of wind. Using measurements recorded at two different precipitation test beds, corrections for unshielded gauges and gauges within different types of windshields were developed and tested. Using the new corrections, uncorrectable errors were quantified, and measurement biases were successfully eliminated.
Craig D. Smith, Anna Kontu, Richard Laffin, and John W. Pomeroy
The Cryosphere, 11, 101–116, https://doi.org/10.5194/tc-11-101-2017, https://doi.org/10.5194/tc-11-101-2017, 2017
Short summary
Short summary
One of the objectives of the WMO Solid Precipitation Intercomparison Experiment (SPICE) was to assess the performance of automated instruments that measure snow water equivalent and make recommendations on the best measurement practices and data interpretation. This study assesses the Campbell Scientific CS725 and the Sommer SSG100 for measuring SWE. Different measurement principals of the instruments as well as site characteristics influence the way that the SWE data should be interpreted.
Graham A. Sexstone, Steven R. Fassnacht, Juan Ignacio López-Moreno, and Christopher A. Hiemstra
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-188, https://doi.org/10.5194/tc-2016-188, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Seasonal snowpacks vary spatially within mountainous environments and the representation of this variability by modeling can be a challenge. This study uses high-resolution airborne lidar data to evaluate the variability of snow depth within a grid size common for modeling applications. Results suggest that snow depth coefficient of variation is well correlated with ecosystem type, depth of snow, and topography and forest characteristics, and can be parameterized using airborne lidar data.
Anita Drumond, Erica Taboada, Raquel Nieto, Luis Gimeno, Sergio M. Vicente-Serrano, and Juan Ignacio López-Moreno
Earth Syst. Dynam., 7, 549–558, https://doi.org/10.5194/esd-7-549-2016, https://doi.org/10.5194/esd-7-549-2016, 2016
Short summary
Short summary
A Lagrangian approach was used to identify the moisture sources for fourteen ice-core sites located worldwide for the present climate. The approach computed budgets of evaporation minus precipitation by calculating changes in the specific humidity along 10-day backward trajectories. The results indicate that the oceanic regions around the subtropical high-pressure centers provide most of moisture, and their contribution varies throughout the year following the annual cycles of the centers.
Juan Ignacio López-Moreno, Jesús Revuelto, Ibai Rico, Javier Chueca-Cía, Asunción Julián, Alfredo Serreta, Enrique Serrano, Sergio Martín Vicente-Serrano, Cesar Azorin-Molina, Esteban Alonso-González, and José María García-Ruiz
The Cryosphere, 10, 681–694, https://doi.org/10.5194/tc-10-681-2016, https://doi.org/10.5194/tc-10-681-2016, 2016
Short summary
Short summary
This paper analyzes the evolution of the Monte Perdido Glacier, Spanish Pyrenees, since 1981. Changes in ice volume were estimated by geodetic methods and terrestrial laser scanning. An acceleration in ice thinning is detected during the 21st century. Local climatic changes observed during the study period do not seem sufficient to explain the acceleration. The strong disequilibrium between the glacier and the current climate and feedback mechanisms seems to be the most plausible explanation.
E. Nadal-Romero, J. Revuelto, P. Errea, and J. I. López-Moreno
SOIL, 1, 561–573, https://doi.org/10.5194/soil-1-561-2015, https://doi.org/10.5194/soil-1-561-2015, 2015
Short summary
Short summary
Geomatic techniques have been routinely applied in erosion studies, providing the opportunity to build high-resolution topographic models.The aim of this study is to assess and compare the functioning of terrestrial laser scanner and close range photogrammetry techniques to evaluate erosion and deposition processes in a humid badlands area.
Our results demonstrated that north slopes experienced more intense and faster dynamics than south slopes as well as the highest erosion rates.
R. D. Leeper and J. Kochendorfer
Atmos. Meas. Tech., 8, 2291–2300, https://doi.org/10.5194/amt-8-2291-2015, https://doi.org/10.5194/amt-8-2291-2015, 2015
Short summary
Short summary
Evaporation from precipitation gauges can bias measurements lower. The use of evaporation suppressants may not always be practical, considering the added cost of maintenance, transport, and disposal of the gauge additive. In this field study, two quality assurance methods used to evaluate depth change for the US Climate Reference Network were compared. Results from this study indicate calculation techniques can reduce the impact of gauge evaporation on precipitation measurements.
J.-E. Lee, G. W. Lee, M. Earle, and R. Nitu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-4157-2015, https://doi.org/10.5194/hessd-12-4157-2015, 2015
Revised manuscript has not been submitted
M. A. Wolff, K. Isaksen, A. Petersen-Øverleir, K. Ødemark, T. Reitan, and R. Brækkan
Hydrol. Earth Syst. Sci., 19, 951–967, https://doi.org/10.5194/hess-19-951-2015, https://doi.org/10.5194/hess-19-951-2015, 2015
Short summary
Short summary
The article reports on measurements, analysis and results of a Norwegian field study aimed to adjust automatic precipitation measurements for under-catch during windy conditions. An unique data set could be collected, documenting the under-catch of snow at very high wind speeds for the first time. A new continuous adjustment function for precipitation measured by an automated gauge covering all three precipitation types (snow, mixed and rain) was established.
J. Revuelto, J. I. López-Moreno, C. Azorin-Molina, and S. M. Vicente-Serrano
The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, https://doi.org/10.5194/tc-8-1989-2014, 2014
E. Morán-Tejeda, J. Zabalza, K. Rahman, A. Gago-Silva, J. I. López-Moreno, S. Vicente-Serrano, A. Lehmann, C. L. Tague, and M. Beniston
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-11983-2013, https://doi.org/10.5194/hessd-10-11983-2013, 2013
Manuscript not accepted for further review
J. Lorenzo-Lacruz, E. Morán-Tejeda, S. M. Vicente-Serrano, and J. I. López-Moreno
Hydrol. Earth Syst. Sci., 17, 119–134, https://doi.org/10.5194/hess-17-119-2013, https://doi.org/10.5194/hess-17-119-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Time-resolved measurements of the densities of individual frozen hydrometeors and fresh snowfall
Uncertainties in temperature statistics and fluxes determined by sonic anemometers due to wind-induced vibrations of mounting arms
Performance evaluation of MeteoTracker mobile sensor for outdoor applications
Impacts of anemometer changes, site relocations and processing methods on wind speed trends in China
Validation of Aeolus L2B products over the tropical Atlantic using radiosondes
Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
Evaluation of in situ observations on Marine Weather Observer during Typhoon Sinlaku
Validation of the WRF-ARW eclipse model with measurements from the 2019 and 2020 total solar eclipses
Assessing the Ducting Phenomenon and its Impact on GNSS Radio Occultation Refractivity Retrievals over the Northeast Pacific Ocean using Radiosondes and Global Reanalysis
How observations from automatic hail sensors in Switzerland shed light on local hailfall duration and compare with hailpad measurements
A data-driven persistence test for robust (probabilistic) quality control of measured environmental time series: constant value episodes
A comparative evaluation of snowflake particle shape estimation techniques used by the Precipitation Imaging Package (PIP), Multi-Angle Snowflake Camera (MASC), and Two-Dimensional Video Disdrometer (2DVD)
Comparison of GRUAN data products for Meisei iMS-100 and Vaisala RS92 radiosondes at Tateno, Japan
Validation of the Aeolus Level-2B wind product over Northern Canada and the Arctic
Boundary-layer height and surface stability at Hyytiälä, Finland, in ERA5 and observations
Characterizing and correcting the warm bias observed in Aircraft Meteorological Data Relay (AMDAR) temperature observations
Something fishy going on? Evaluating the Poisson hypothesis for rainfall estimation using intervalometers: results from an experiment in Tanzania
Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and higher-order moments at the forest–air interface
Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents
Smartphone pressure data: quality control and impact on atmospheric analysis
Automated precipitation monitoring with the Thies disdrometer: biases and ways for improvement
More science with less: evaluation of a 3D-printed weather station
Characteristics and performance of wind profiles as observed by the radar wind profiler network of China
Confronting the boundary layer data gap: evaluating new and existing methodologies of probing the lower atmosphere
On the estimation of vertical air velocity and detection of atmospheric turbulence from the ascent rate of balloon soundings
Comparison of turbulence measurements by a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar
Using computational fluid dynamics and field experiments to improve vehicle-based wind measurements for environmental monitoring
Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06° N, 140.13° E), Japan
A method to assess the accuracy of sonic anemometer measurements
Using reference radiosondes to characterise NWP model uncertainty for improved satellite calibration and validation
Evaluation of OAFlux datasets based on in situ air–sea flux tower observations over Yongxing Island in 2016
Characteristics of vertical velocities estimated from drop size and fall velocity spectra of a Parsivel disdrometer
Effects of temporal averaging on short-term irradiance variability under mixed sky conditions
Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour
Hotplate precipitation gauge calibrations and field measurements
Field intercomparison of prevailing sonic anemometers
A new method for estimating UV fluxes at ground level in cloud-free conditions
Precipitable water characteristics during the 2013 Colorado flood using ground-based GPS measurements
Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics
Comparison of hourly surface downwelling solar radiation estimated from MSG–SEVIRI and forecast by the RAMS model with pyranometers over Italy
Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure
An automated method for the evaluation of the pointing accuracy of Sun-tracking devices
Compatibility of different measurement techniques of global solar radiation and application for long-term observations at Izaña Observatory
Uncertainties of ground-based microwave radiometer retrievals in zenith and off-zenith observations under snow conditions
Performance of post-processing algorithms for rainfall intensity using measurements from tipping-bucket rain gauges
Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site
HOAPS and ERA-Interim precipitation over the sea: validation against shipboard in situ measurements
Quality assessment of solar UV irradiance measured with array spectroradiometers
Spatial mapping of ground-based observations of total ozone
Performance of WVSS-II hygrometers on the FAAM research aircraft
Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 17, 4581–4598, https://doi.org/10.5194/amt-17-4581-2024, https://doi.org/10.5194/amt-17-4581-2024, 2024
Short summary
Short summary
Accurate measurements of the properties of snowflakes are challenging to make. We present a new technique for the real-time measurement of the density of freshly fallen individual snowflakes. A new thermal-imaging instrument, the Differential Emissivity Imaging Disdrometer (DEID), is shown to be capable of providing accurate estimates of individual snowflake and bulk snow hydrometeor density. The method exploits the rate of heat transfer during the melting of a snowflake on a hotplate.
Zhongming Gao, Heping Liu, Dan Li, Bai Yang, Von Walden, Lei Li, and Ivan Bogoev
Atmos. Meas. Tech., 17, 4109–4120, https://doi.org/10.5194/amt-17-4109-2024, https://doi.org/10.5194/amt-17-4109-2024, 2024
Short summary
Short summary
Using data collected from three levels of a 62 m tower, we found that both the temperature variances and sensible heat flux obtained from sonic anemometers are consistently lower, by a few percent, compared to those from fine-wire thermocouples.
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024, https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Short summary
The characterization of the urban microclimate starts with atmospheric monitoring using a dense array of sensors to capture the spatial variations induced by the different morphology, land cover, and presence of vegetation. To provide a new sensor for this scope, this paper evaluates the outdoor performance of a commercial mobile sensor. The results mark the sensor's ability to capture the same atmospheric variability as the reference, making it a valid solution for atmospheric monitoring.
Yi Liu, Lihong Zhou, Yingzuo Qin, Cesar Azorin-Molina, Cheng Shen, Rongrong Xu, and Zhenzhong Zeng
Atmos. Meas. Tech., 17, 1123–1131, https://doi.org/10.5194/amt-17-1123-2024, https://doi.org/10.5194/amt-17-1123-2024, 2024
Short summary
Short summary
Our research analyzed China's wind speed data and addressed inconsistencies caused by factors like equipment changes and station relocations. After improving data quality, China's recent wind speed decrease reduced by 41 %, revealing an increasing trend. This emphasizes the importance of rigorous data processing for accurate trend assessments in various research fields.
Maurus Borne, Peter Knippertz, Martin Weissmann, Benjamin Witschas, Cyrille Flamant, Rosimar Rios-Berrios, and Peter Veals
Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024, https://doi.org/10.5194/amt-17-561-2024, 2024
Short summary
Short summary
This study assesses the quality of Aeolus wind measurements over the tropical Atlantic. The results identified the accuracy and precision of the Aeolus wind measurements and the potential source of errors. For instance, the study revealed atmospheric conditions that can deteriorate the measurement quality, such as weaker laser signal in cloudy or dusty conditions, and confirmed the presence of an orbital-dependant bias. These results can help to improve the Aeolus wind measurement algorithm.
Marcel Schröder, Tobias Bätge, Eberhard Bodenschatz, Michael Wilczek, and Gholamhossein Bagheri
Atmos. Meas. Tech., 17, 627–657, https://doi.org/10.5194/amt-17-627-2024, https://doi.org/10.5194/amt-17-627-2024, 2024
Short summary
Short summary
The rate at which energy is dissipated in a turbulent flow is an extremely important quantity. In the atmosphere, it is usually measured by recording a velocity time at a specific location. Our goal is to understand how best to estimate the dissipation rate from such data based on various available methods. Our reference for evaluating the performance of the different methods is data generated with direct numerical simulations and in highly controlled laboratory setups.
Wenying He, Hongbin Chen, Hongyong Yu, Jun Li, Jidong Pan, Shuqing Ma, Xuefen Zhang, Rang Guo, Bingke Zhao, Xi Chen, Xiangao Xia, and Kaicun Wang
Atmos. Meas. Tech., 17, 135–144, https://doi.org/10.5194/amt-17-135-2024, https://doi.org/10.5194/amt-17-135-2024, 2024
Short summary
Short summary
The Marine Weather Observer (MWO) system completed a long-term observation, actively approaching the center of Typhoon Sinlaku on 24 July–2 August 2020, over the South China Sea. The in situ observations were evaluated through comparison with buoy observations during the evolution of Typhoon Sinlaku. As a mobile observation station, MWO has shown its unique advantages over traditional observation methods, and the results preliminarily demonstrate the reliable observation capability of MWO.
Carl E. Spangrude, Jennifer W. Fowler, W. Graham Moss, and June Wang
Atmos. Meas. Tech., 16, 5167–5179, https://doi.org/10.5194/amt-16-5167-2023, https://doi.org/10.5194/amt-16-5167-2023, 2023
Short summary
Short summary
Atmospheric measurements were completed for two total solar eclipses. An eclipse-specific weather model was utilized to model the atmosphere before, during, and after the eclipse events. These measurements have enabled further validation of the model's performance in simulating atmospheric responses to total solar eclipses. The paper concludes by recommending further scientific analyses to be explored utilizing the unique datasets presented.
Thomas E. Winning, Feiqin Xie, and Kevin J. Nelson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-150, https://doi.org/10.5194/amt-2023-150, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
The effect of ducting due to the presence of the planetary boundary layer (PBL) is prevalent over the northeastern Pacific Ocean from Los Angeles to Honolulu. The ducting induced refractivity bias in the radiosonde climatology and global reanalysis data is highly correlated with the height of the PBL. The magnitude of bias is linearly dependent on the strength of ducting but not the location and the overall reanalysis data systematically underestimates the height of the PBL by as much as 120 m.
Jérôme Kopp, Agostino Manzato, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 16, 3487–3503, https://doi.org/10.5194/amt-16-3487-2023, https://doi.org/10.5194/amt-16-3487-2023, 2023
Short summary
Short summary
We present the first study of extended field observations made by a network of 80 automatic hail sensors from Switzerland. The sensors record the exact timing of hailstone impacts, providing valuable information about the local duration of hailfall. We found that the majority of hailfalls lasts just a few minutes and that most hailstones, including the largest, fall during a first phase of high hailstone density, while a few remaining and smaller hailstones fall in a second low-density phase.
Najmeh Kaffashzadeh
Atmos. Meas. Tech., 16, 3085–3100, https://doi.org/10.5194/amt-16-3085-2023, https://doi.org/10.5194/amt-16-3085-2023, 2023
Short summary
Short summary
Although quality control is a well-known issue in data application, research initiatives and organizations apply given methods based on traditional techniques (ad hoc thresholds and manual). These approaches are not only error prone but also unsuitable for a large volume of data. The method proposed in this paper is based on a new concept (probability) as an intuitive indicator and data’s characteristics, which leads it to be applicable to a wide variety of data and eases its
fit for purpose.
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022, https://doi.org/10.5194/amt-15-6545-2022, 2022
Short summary
Short summary
This study compares the techniques used to measure snowflake shape by three instruments: PIP, MASC, and 2DVD. Our findings indicate that the MASC technique produces reliable shape measurements; the 2DVD technique performs better than expected considering the instrument was designed to measure raindrops; and the PIP technique does not produce reliable snowflake shape measurements. We also demonstrate that the PIP images can be reprocessed to correct the shape measurement issues.
Shunsuke Hoshino, Takuji Sugidachi, Kensaku Shimizu, Eriko Kobayashi, Masatomo Fujiwara, and Masami Iwabuchi
Atmos. Meas. Tech., 15, 5917–5948, https://doi.org/10.5194/amt-15-5917-2022, https://doi.org/10.5194/amt-15-5917-2022, 2022
Short summary
Short summary
GRUAN data products (GDPs) from Meisei iMS-100 and Vaisala RS92 were compared with 59 dual sounding data. For daytime observations, the iMS-100 temperature is around 0.5 K lower than RS92-GDP in the stratosphere, but for nighttime observations, the difference is around −0.1 K, and data are mostly in agreement. For relative humidity (RH), iMS-100 is around 1–2 % RH higher in the troposphere and 1 % RH smaller in the stratosphere than RS92, but both GDPs are in agreement for most of the profile.
Chih-Chun Chou, Paul J. Kushner, Stéphane Laroche, Zen Mariani, Peter Rodriguez, Stella Melo, and Christopher G. Fletcher
Atmos. Meas. Tech., 15, 4443–4461, https://doi.org/10.5194/amt-15-4443-2022, https://doi.org/10.5194/amt-15-4443-2022, 2022
Short summary
Short summary
Aeolus is the first satellite that provides global wind profile measurements. The mission aims to improve the weather forecasts in the tropics, but also, potentially, in the polar regions. We evaluate the performance of the instrument over the Canadian North and the Arctic by comparing its measured winds in both cloudy and non-cloudy layers to wind data from forecasts, reanalysis, and ground-based instruments. Overall, good agreement was seen, but Aeolus winds have greater dispersion.
Victoria Anne Sinclair, Jenna Ritvanen, Gabin Urbancic, Irene Erner, Yurii Batrak, Dmitri Moisseev, and Mona Kurppa
Atmos. Meas. Tech., 15, 3075–3103, https://doi.org/10.5194/amt-15-3075-2022, https://doi.org/10.5194/amt-15-3075-2022, 2022
Short summary
Short summary
We investigate the boundary-layer (BL) height and surface stability in southern Finland using radiosondes, a microwave radiometer and ERA5 reanalysis. Accurately quantifying the BL height is challenging, and the diagnosed BL height can depend strongly on the method used. Microwave radiometers provide reliable estimates of the BL height but only in unstable conditions. ERA5 captures the BL height well except under very stable conditions, which occur most commonly at night during the warm season.
Siebren de Haan, Paul M. A. de Jong, and Jitze van der Meulen
Atmos. Meas. Tech., 15, 811–818, https://doi.org/10.5194/amt-15-811-2022, https://doi.org/10.5194/amt-15-811-2022, 2022
Short summary
Short summary
AMDAR temperatures suffer from a bias, which can be related to a difference in the timing of height and measurement and to internal corrections applied to pressure altitude. Based on NWP model temperature data, combined with Mach number and true airspeed, we could estimate corrections. Comparing corrected temperatures with (independent) radiosonde observations demonstrates a reduction in the bias, from 0.5 K to around zero, and standard deviation, of almost 10 %.
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021, https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Short summary
Ground-based rainfall observations across the African continent are sparse. We present a new and inexpensive rainfall measuring instrument (the intervalometer) and use it to derive reasonably accurate rainfall rates. These are dependent on a fundamental assumption that is widely used in parameterisations of the rain drop size distribution. This assumption is tested and found to not apply for most raindrops but is still useful in deriving rainfall rates. The intervalometer shows good potential.
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021, https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Short summary
We evaluated the suitability of fiber-optic distributed temperature sensing (DTS) for observing spatial (>25 cm) and temporal (>1 s) details of airflow within and above forests. The DTS measurements could discern up to third-order moments of the flow and observe spatial details of coherent flow motions. Similar measurements are not possible with more conventional measurement techniques. Hence, the DTS measurements will provide key insights into flows close to roughness elements, e.g. trees.
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, https://doi.org/10.5194/amt-14-2167-2021, 2021
Short summary
Short summary
This study provides an overview of validation activities to determine the Aeolus HLOS wind errors and to understand the biases by investigating possible dependencies and testing bias correction approaches. To ensure meaningful validation statistics, collocated radiosondes and two different global NWP models, the ECMWF IFS and the ICON model (DWD), are used as reference data. To achieve an estimate for the Aeolus instrumental error the representativeness errors for the comparisons are evaluated.
Rumeng Li, Qinghong Zhang, Juanzhen Sun, Yun Chen, Lili Ding, and Tian Wang
Atmos. Meas. Tech., 14, 785–801, https://doi.org/10.5194/amt-14-785-2021, https://doi.org/10.5194/amt-14-785-2021, 2021
Short summary
Short summary
In this paper, we describe a bias-correction method based on machine learning without the need to obtain users' personal information and demonstrate that the method can effectively reduce the bias in smartphone pressure observations. The characteristics of this dataset are discussed, and the potential application of the bias-corrected data is illustrated by the fine-scale analysis of a hailstorm that occurred on 10 June 2016 in Beijing, China.
Michael Fehlmann, Mario Rohrer, Annakaisa von Lerber, and Markus Stoffel
Atmos. Meas. Tech., 13, 4683–4698, https://doi.org/10.5194/amt-13-4683-2020, https://doi.org/10.5194/amt-13-4683-2020, 2020
Short summary
Short summary
The Thies disdrometer is used to monitor precipitation intensity and its phase and thus may provide valuable information for the management of meteorological and hydrological risks. In this study, we characterize biases of this instrument using common reference instruments at a pre-alpine study site in Switzerland. We find a systematic underestimation of liquid precipitation amounts and suggest possible reasons for and corrections to this bias and relate these findings to other study sites.
Adam Theisen, Max Ungar, Bryan Sheridan, and Bradley G. Illston
Atmos. Meas. Tech., 13, 4699–4713, https://doi.org/10.5194/amt-13-4699-2020, https://doi.org/10.5194/amt-13-4699-2020, 2020
Short summary
Short summary
A low-cost weather station with 3D-printed components was built, based on the UCAR 3D-PAWS project, and deployed alongside an Oklahoma Mesonet station for an 8-month study to determine the longevity of these sensors and their performance compared with standard commercial sensors. Results show that the low-cost sensors can perform as well as the more expensive commercial ones for short-term deployments with the possibility for long-term deployments with proper maintenance and replacement.
Boming Liu, Jianping Guo, Wei Gong, Lijuan Shi, Yong Zhang, and Yingying Ma
Atmos. Meas. Tech., 13, 4589–4600, https://doi.org/10.5194/amt-13-4589-2020, https://doi.org/10.5194/amt-13-4589-2020, 2020
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. However, the wind profile across China remains poorly understood. Here we reveal the salient features of winds from the radar wind profile of China, including the main instruments, spatial coverage and sampling frequency. This work is expected to allow the public and scientific community to be more familiar with the nationwide network and encourage the use of these valuable data in future research and applications.
Tyler M. Bell, Brian R. Greene, Petra M. Klein, Matthew Carney, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 3855–3872, https://doi.org/10.5194/amt-13-3855-2020, https://doi.org/10.5194/amt-13-3855-2020, 2020
Short summary
Short summary
It is well known that the atmospheric boundary layer is under-sampled in the vertical dimension. Recently, weather-sensing uncrewed aerial systems (WxUAS) have created new opportunities to sample this region of the atmosphere. This study compares a WxUAS developed at the University of Oklahoma to ground-based remote sensing and radiosondes. We find that overall the systems generally agreed well both thermodynamically and kinematically. However, there is still room to improve each system.
Hubert Luce and Hiroyuki Hashiguchi
Atmos. Meas. Tech., 13, 1989–1999, https://doi.org/10.5194/amt-13-1989-2020, https://doi.org/10.5194/amt-13-1989-2020, 2020
Short summary
Short summary
Vertical ascent rate Vb of meteorological balloons is sometimes used for retrieving vertical air velocity, an important parameter for meteorological applications. Comparisons with concurrent radar and unmanned aerial vehicle (UAV) measurements of atmospheric turbulence showed that Vb can be increased in turbulent layers due to the probable decrease in the drag coefficient of the balloon. We conclude that Vb can also potentially be used for the detection of atmospheric turbulence.
Matthias Mauder, Michael Eggert, Christian Gutsmuths, Stefan Oertel, Paul Wilhelm, Ingo Voelksch, Luise Wanner, Jens Tambke, and Ivan Bogoev
Atmos. Meas. Tech., 13, 969–983, https://doi.org/10.5194/amt-13-969-2020, https://doi.org/10.5194/amt-13-969-2020, 2020
Short summary
Short summary
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of flow distortion. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with comparabilities of 0.082 and 0.020 m s−1, respectively. Friction velocity is underestimated by the CSAT3B by 3 %.
Tara Hanlon and David Risk
Atmos. Meas. Tech., 13, 191–203, https://doi.org/10.5194/amt-13-191-2020, https://doi.org/10.5194/amt-13-191-2020, 2020
Short summary
Short summary
In this study, we aimed to improve accuracy of wind speed and direction measurements from an anemometer mounted atop a research vehicle. Controlled field tests and computer simulations showed that the vehicle shape biases airflow above the vehicle. The results indicate that placing an anemometer at a significant height (> 1 m) above the vehicle, and calibrating anemometer measurements for vehicle shape and wind angle, can be effective in reducing bias in measurements of wind speed and direction.
Eriko Kobayashi, Shunsuke Hoshino, Masami Iwabuchi, Takuji Sugidachi, Kensaku Shimizu, and Masatomo Fujiwara
Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, https://doi.org/10.5194/amt-12-3039-2019, 2019
Short summary
Short summary
The authors carried out dual flights of RS-11G and RS92-SGP radiosondes and investigated the differences in the performance of the radiosondes to help characterize GRUAN data products. A novel aspect of GRUAN data products is that vertically resolved uncertainty estimates and metadata are provided for each sounding and comparison of GRUAN data products is important in securing the temporal homogeneity of climate data records.
Alfredo Peña, Ebba Dellwik, and Jakob Mann
Atmos. Meas. Tech., 12, 237–252, https://doi.org/10.5194/amt-12-237-2019, https://doi.org/10.5194/amt-12-237-2019, 2019
Short summary
Short summary
We propose a method to assess the accuracy of turbulence measurements by sonic anemometers. The idea is to compute the ratio of the vertical to along-wind velocity spectrum within the inertial subrange. We found that the Metek USA-1 and the Campbell CSAT3 sonic anemometers do not show the expected theoretical ratio. A wind-tunnel-based correction recovers the expected ratio for the USA-1. A correction for the CSAT3 does not, illustrating that this sonic anemometer suffers from flow distortion.
Fabien Carminati, Stefano Migliorini, Bruce Ingleby, William Bell, Heather Lawrence, Stuart Newman, James Hocking, and Andrew Smith
Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019, https://doi.org/10.5194/amt-12-83-2019, 2019
Short summary
Short summary
The GRUAN processor is a software developed to collocate radiosonde profiles and numerical weather prediction model fields, simulate top-of-atmosphere brightness temperature at frequencies used by space-borne instruments, and propagate the radiosonde uncertainties in that simulation. This work responds to an identified lack of metrologically traceable characterisation of uncertainties in model fields that are increasingly used for the validation and calibration of space-borne instruments.
Fenghua Zhou, Rongwang Zhang, Rui Shi, Ju Chen, Yunkai He, Dongxiao Wang, and Qiang Xie
Atmos. Meas. Tech., 11, 6091–6106, https://doi.org/10.5194/amt-11-6091-2018, https://doi.org/10.5194/amt-11-6091-2018, 2018
Short summary
Short summary
In this work, successive air–sea heat flux-related data were acquired over the course of a year (01/02/2016–31/01/2017) at the YXASFT on Yongxing Island. Then, seasonal comparisons were conducted for the daily mean surface bulk variables and heat fluxes between the WHOI OAFlux products and YXASFT observations. The conclusions in this paper will provide useful reference for researchers on how to select the appropriate OAFlux datasets in different seasons over the South China Sea.
Dong-Kyun Kim and Chang-Keun Song
Atmos. Meas. Tech., 11, 3851–3860, https://doi.org/10.5194/amt-11-3851-2018, https://doi.org/10.5194/amt-11-3851-2018, 2018
Short summary
Short summary
A new technique to estimate vertical velocities from Parsivel-measured drop and velocity spectra is developed. The estimated vertical velocities (w) were compared with w components of winds measured from the anemometer at the same site. They showed good agreement with each other, suggesting that this technique is reliable and applicable to rainfall studies. With these w values, rainfall characteristics related to up-/downdraft were investigated on the windward and leeward sides of a mountain.
Gerald M. Lohmann and Adam H. Monahan
Atmos. Meas. Tech., 11, 3131–3144, https://doi.org/10.5194/amt-11-3131-2018, https://doi.org/10.5194/amt-11-3131-2018, 2018
Short summary
Short summary
Using high-resolution surface irradiance data with original temporal resolutions between 0.01 s and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability.
Astrid Lampert, Jörg Hartmann, Falk Pätzold, Lennart Lobitz, Peter Hecker, Katrin Kohnert, Eric Larmanou, Andrei Serafimovich, and Torsten Sachs
Atmos. Meas. Tech., 11, 2523–2536, https://doi.org/10.5194/amt-11-2523-2018, https://doi.org/10.5194/amt-11-2523-2018, 2018
Short summary
Short summary
We compared two different fast-response humidity sensors simultaneously on different airborne platforms. One is a particular, well-establed Lyman-alpha hygrometer that has been used for decades as the standard for fast airborne humidity measurements. However, it is not available any more. The other one is a hygrometer based on the absorption of infrared radiation, from LI-COR. For an environment of low vibrations, the LI-COR sensor is suitable for fast airborne water vapour measurements.
Nicholas Zelasko, Adam Wettlaufer, Bujidmaa Borkhuu, Matthew Burkhart, Leah S. Campbell, W. James Steenburgh, and Jefferson R. Snider
Atmos. Meas. Tech., 11, 441–458, https://doi.org/10.5194/amt-11-441-2018, https://doi.org/10.5194/amt-11-441-2018, 2018
Short summary
Short summary
The hotplate precipitation gauge has the potential to solve some problems with conventional precipitation gauge measurements, especially for snowfall. This paper extends the seminal published work, Rasmussen et al. (2011). We assert that the precipitation rate algorithm we have developed for the hotplate is an improvement on that which was previously published.
Matthias Mauder and Matthias J. Zeeman
Atmos. Meas. Tech., 11, 249–263, https://doi.org/10.5194/amt-11-249-2018, https://doi.org/10.5194/amt-11-249-2018, 2018
William Wandji Nyamsi, Mikko R. A. Pitkänen, Youva Aoun, Philippe Blanc, Anu Heikkilä, Kaisa Lakkala, Germar Bernhard, Tapani Koskela, Anders V. Lindfors, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 10, 4965–4978, https://doi.org/10.5194/amt-10-4965-2017, https://doi.org/10.5194/amt-10-4965-2017, 2017
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating UV fluxes at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
Hannah K. Huelsing, Junhong Wang, Carl Mears, and John J. Braun
Atmos. Meas. Tech., 10, 4055–4066, https://doi.org/10.5194/amt-10-4055-2017, https://doi.org/10.5194/amt-10-4055-2017, 2017
Short summary
Short summary
The precipitable water (PW) was examined for the 2013 Colorado flood to determine how climatologically abnormal this event was. The seasonal PW maximum extended into early September and the September monthly mean PW exceeded the 99th percentile of climatology with a value 25% higher than the 40-year climatology. The above-normal, near-saturation PW values during the flood were the result of large-scale moisture transport into Colorado from the eastern tropical Pacific and the Gulf of Mexico.
Yoshimi Kawai, Masaki Katsumata, Kazuhiro Oshima, Masatake E. Hori, and Jun Inoue
Atmos. Meas. Tech., 10, 2485–2498, https://doi.org/10.5194/amt-10-2485-2017, https://doi.org/10.5194/amt-10-2485-2017, 2017
Short summary
Short summary
The model RS92 radiosonde manufactured by Vaisala Ltd. is now being replaced with a successor model, the RS41, and we need to clarify accuracy differences between them for a variety of research. For this purpose, 36 twin-radiosonde flights were performed over the oceans from the Arctic to the tropics. Basically the differences between the RS41 and RS92 were smaller than the nominal combined uncertainties of the RS41; however, we found non-negligible biases in relative humidity and pressure.
Stefano Federico, Rosa Claudia Torcasio, Paolo Sanò, Daniele Casella, Monica Campanelli, Jan Fokke Meirink, Ping Wang, Stefania Vergari, Henri Diémoz, and Stefano Dietrich
Atmos. Meas. Tech., 10, 2337–2352, https://doi.org/10.5194/amt-10-2337-2017, https://doi.org/10.5194/amt-10-2337-2017, 2017
Short summary
Short summary
In this paper we evaluate the performance of two estimates of the global horizontal irradiance (GHI), one derived from the Meteosat Second Generation and one from a meteorological model (Regional Atmospheric Modeling System) forecast. The focus area is Italy, and the performance is evaluated for 12 pyranometers spanning a range of climate conditions, from Mediterranean maritime to Alpine.
Armin Sigmund, Lena Pfister, Chadi Sayde, and Christoph K. Thomas
Atmos. Meas. Tech., 10, 2149–2162, https://doi.org/10.5194/amt-10-2149-2017, https://doi.org/10.5194/amt-10-2149-2017, 2017
Dietmar J. Baumgartner, Werner Pötzi, Heinrich Freislich, Heinz Strutzmann, Astrid M. Veronig, and Harald E. Rieder
Atmos. Meas. Tech., 10, 1181–1190, https://doi.org/10.5194/amt-10-1181-2017, https://doi.org/10.5194/amt-10-1181-2017, 2017
Short summary
Short summary
In this work we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a platform-independent, fully automated, and cost-effective system to evaluate the pointing accuracy of Sun-tracking devices as well as its application at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site and to the results from a 15-week evaluating period.
Rosa Delia García, Emilio Cuevas, Omaira Elena García, Ramón Ramos, Pedro Miguel Romero-Campos, Fernado de Ory, Victoria Eugenia Cachorro, and Angel de Frutos
Atmos. Meas. Tech., 10, 731–743, https://doi.org/10.5194/amt-10-731-2017, https://doi.org/10.5194/amt-10-731-2017, 2017
Short summary
Short summary
A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.
Wengang Zhang, Guirong Xu, Yuanyuan Liu, Guopao Yan, Dejun Li, and Shengbo Wang
Atmos. Meas. Tech., 10, 155–165, https://doi.org/10.5194/amt-10-155-2017, https://doi.org/10.5194/amt-10-155-2017, 2017
Short summary
Short summary
A comparison between a microwave radiometer and radiosonde is carried out, and performances of zenith and off-zenith observations during snowfall are shown. In off-zenith observations, the effect of snow is obviously mitigated, and the deviation between microwave radiometer and radiosonde is small. With the aid of off-zenith observation, reliable thermodynamic atmospheric profiles can be collected, and those will be useful for the analysis and forecasting of severe convective weather.
Mattia Stagnaro, Matteo Colli, Luca Giovanni Lanza, and Pak Wai Chan
Atmos. Meas. Tech., 9, 5699–5706, https://doi.org/10.5194/amt-9-5699-2016, https://doi.org/10.5194/amt-9-5699-2016, 2016
Short summary
Short summary
The research presented in this work involves field data analysis, numerical modelling techniques and approaches to a long-standing problem of liquid precipitation measurements: the sampling and the interpretation of the tipping-bucket sensor signal. The present study shows relevant implications of the adopted data processing methods for the accuracy of the rainfall intensity measurements provided by traditional tipping-bucket gauges.
Michael P. Jensen, Donna J. Holdridge, Petteri Survo, Raisa Lehtinen, Shannon Baxter, Tami Toto, and Karen L. Johnson
Atmos. Meas. Tech., 9, 3115–3129, https://doi.org/10.5194/amt-9-3115-2016, https://doi.org/10.5194/amt-9-3115-2016, 2016
Short summary
Short summary
An intercomparison of Vaisala's latest-generation radiosonde RS41 and the widely used RS92 was performed in north-central Oklahoma, USA, during June 2014. The results indicate that for the conditions observed during the intercomparison the measurements of pressure, temperature, humidity, and winds agree to within the manufacturer-specified combined uncertainties. Some important exceptions were noted when exiting liquid cloud layers where evaporative cooling has less impact for RS41 measurements.
Karl Bumke, Gert König-Langlo, Julian Kinzel, and Marc Schröder
Atmos. Meas. Tech., 9, 2409–2423, https://doi.org/10.5194/amt-9-2409-2016, https://doi.org/10.5194/amt-9-2409-2016, 2016
Short summary
Short summary
Satellite-derived HOAPS and ERA-Interim reanalysis data were validated against shipboard precipitation measurements. Results show that HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially at low latitudes. However, HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide precipitation rate is close to measurements. ERA-Interim strongly overestimates it in the intertropical convergence zone and southern subtropics.
Luca Egli, Julian Gröbner, Gregor Hülsen, Luciano Bachmann, Mario Blumthaler, Jimmy Dubard, Marina Khazova, Richard Kift, Kees Hoogendijk, Antonio Serrano, Andrew Smedley, and José-Manuel Vilaplana
Atmos. Meas. Tech., 9, 1553–1567, https://doi.org/10.5194/amt-9-1553-2016, https://doi.org/10.5194/amt-9-1553-2016, 2016
Short summary
Short summary
Array spectroradiometers are small, light, robust and cost-effective instruments, and are increasingly used for atmospheric measurements. The quality of array spectroradiometers is assessed for the reliable quantification of ultraviolet radiation (UV) in order to monitor the exposure of UV radiation to human health. The study shows that reliable UV measurements with these instruments are limited for observations around noon and show large biases in the morning and evening.
K.-L. Chang, S. Guillas, and V. E. Fioletov
Atmos. Meas. Tech., 8, 4487–4505, https://doi.org/10.5194/amt-8-4487-2015, https://doi.org/10.5194/amt-8-4487-2015, 2015
Short summary
Short summary
The aim of this article is to analyze the total column ozone data from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) that consists of around 150 stations irregularly spaced over the globe. Our use of a new statistical spatial technique over the globe can greatly outperform the currently used spatial approximation of the total column ozone in terms of approximation. We feel that this technique could benefit the ozone science community.
A. K. Vance, S. J. Abel, R. J. Cotton, and A. M. Woolley
Atmos. Meas. Tech., 8, 1617–1625, https://doi.org/10.5194/amt-8-1617-2015, https://doi.org/10.5194/amt-8-1617-2015, 2015
Short summary
Short summary
Comparisons on the FAAM BAe 146-301 aircraft show good agreement between chilled mirror hygrometers and a WVSS-II fed from a modified Rosemount inlet (wvssR) in coud-free conditions, but a WVSS-II fed from the standard flush inlet (wvssF) over-reads, except at higher humidities. Case studies in cloudy conditions show that wvssF is immune to liquid water and ice, whilst wvssR is susceptible to both. Both WVSS-II inlets respond much more rapidly than the chilled mirror devices, especially wvssF.
Cited articles
Añel, J. A., López-Moreno, J. I., Otto, F. E. L., Vicente-Serrano, S., Schaller, N., Massey, N., Buisán, S. T., and Allen, M. R.: The extreme snow accumulation in the Western Spanish Pyrennes during winter and spring 2013 (in explaining extreme events of 2013 from a climate perspective), B. Am. Meteorol. Soc., 95, 9, 2014.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Beguería, S., Vicente-Serrano, S., López-Moreno, J. I., and García-Ruiz, J. M.: Annual and seasonal mapping of peak intensity, magnitude and duration of extreme precipitation events across a climatic gradient, north-east Iberian Peninsula, Int. J. Climatol, 29, 1759–1779, 2009.
Beniston, M.: Climatic Change in mountain regions: a review of possible impacts, Climate Change, 59, 5–3, 2003.
Buisán, S. T., Sanz, M. A., and López-Moreno, J. I.: Spatial and temporal variability of winter snow and precipitation days in the western and central Spanish Pyrenees, Int. J. Climatol., 35, 259–274, https://doi.org/10.1002/joc.3978, 2014.
Buisán, S. T., López-Moreno, J. I., Sanz, M. A., and Korchendorfer, J.: Impact of weather type variability on winter precipitation, temperature and annual snowpack in the Spanish Pyrenees, Clim. Res., 69, 79–92, https://doi.org/10.3354/cr01391, 2016a.
Buisán, S. T., Alastrué, J., Collado, J. L., San Ambrosio, I., Requena, R., López, M., Gil, M., and Moreta, J. R.: Reference measurements for WMO/CIMO SPICE and on-going projects at the FormigalSarrios field site, WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, Madrid, Spain, 2016b.
Botey, R., Guijarro, J. A., Jiménez, A., and Mestre, A.: Computation of Spanish Precipitation Normals for 1981–2010, State Meteorological Agency (AEMET), Madrid, 2013.
Cortesi, N., Gonzalez-Hidalgo, J. C., Trigo, R. M., and Ramos, A.M .: Weather types and spatial variability of precipitation in the Iberian Peninsula, Int. J. Climatol., 34, 2661–2677, https://doi.org/10.1002/joc.3866, 2014.
Earle, M., Wong, K., Buisan, S., Nitu, R., Reverdin, A., Rasmussen, R., Roulet, Y. A., Kontu, A., and Landolt, S: WMO SPICE: tipping bucket type gauges for measuring solid precipitation, Overview of measuring performance and recommendations on their use, WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, Madrid, Spain, 2016.
El Kenawy, A., López-Moreno, J. I., and Vicente-Serrano, S. M.: Trend and variability of temperature in northeastern Spain (1920–2006): linkage to atmospheric circulation, Atmos. Res., 106, 159–180, https://doi.org/10.1016/j.atmosres.2011.12.006, 2012.
Fassnacht, S. R., Venable, N. B. H., Khishigbayar, J., and Cherry, M. L.: The Probability of Precipitation as Snow Derived from Daily Air Temperature for High Elevation Areas of Colorado, United States, Cold and Mountain Region Hydrological Systems Under Climate Change: Towards Improved Projections, in: Proceedings of symposium H02, IAHS-IAPSO-IASPEI Assembly, July 2013, IAHS, Gothenburg, Sweden, 360, 65–70, 2013.
Goodison, B. E. and Metcalfe, J. R.: The WMO solid precipitation intercomparison: Canadian assessment, in Proceedings of WMO Technical Conference on Instruments and Method of Observation WMO/TD 462, World Meteorol. Organ., Geneva, 221–225, 1992.
Goodison, B. E., Louie, P. Y. T., and Yang, D.: WMO solid precipitation measurement intercomparison, WMO Instruments and Observing Methods Rep., 67, WMO/TD-872, 212 pp., 1998.
Harder P. and Pomeroy J. W.: Hydrological model uncertainty due to precipitation-phase partitioning methods, Hydrol. Process., 28, 4311–4327, 2014.
International Organizing Committee (IOC): WMO Solid Precipitation Intercomparison Experiment (SPICE), 11–15 June 2012, Boulder, USA, http://www.wmo.int/pages/prog/www/IMOP/intercomparisons/SPICE/SPICE.html (last access: 15 February 2017), 2012.
Jonas, T., Geiger, F., and Jenny, H.: Mortality pattern of the Alpine Chamois: the influence of snow meteorological factors, Ann. Glaciol., 49, 56–62, https://doi.org/10.3189/172756408787814735, 2008a.
Jonas, T., Rixen, C., Sturm, M., and Stöckli, V.: How alpine plant growth is linked to snow cover and climate variability, J. Geophys. Res., 113, G03013, https://doi.org/10.1029/2007JG000680, 2008b.
Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., Earle, M. E., Reverdin, A., Wong, K., Smith, C. D., Yang, D., Roulet, Y.-A., Buisan, S., Laine, T., Lee, G., Aceituno, J. L. C., Alastrué, J., Isaksen, K., Meyers, T., Brækkan, R., Landolt, S., Jachcik, A., and Poikonen, A.: Errors and adjustments for single-Alter shielded and unshielded weighing gauge precipitation measurements from WMO-SPICE, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-684, in review, 2017.
Lasanta, T., Laguna, M., and Vicente-Serrano, S. M.: Do tourism-based ski resorts contribute to the homogeneous development of the Mediterranean mountains? A case study in the Central Spanish Pyrenees?, Tourism Manage., 28, 1326–1339, https://doi.org/10.1016/j.tourman.2007.01.003, 2007.
López-Moreno, J. I., Vicente-Serrano, S. M., Beguería, S., El Kenawy, A. M., and Angulo M.: Trends in daily precipitation on the north-eastern Iberian Peninsula, 1955–2006, Int. J. Climatol., 120, 248–257, 2010.
López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E., Lorenzo, J., Kenawy, A., and Beniston, M.: NAO effects on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century, Global Planet. Change, 77, 72–66, 2011.
Mellander, P. E., Löfvenius, M. O., and Laudon, H.: Climate change impact on snow and soil temperature in boreal Scot pine stands, Climatic Change, 85, 179–193, https://doi.org/0.1007/s10584-007-9254-3, 2007.
Nitu, R. and Wong, K.: CIMO survey on national summaries of methods and instruments for solid precipitation measurement at automatic weather stations, Instruments and Observing Methods Report no. 102, WMO/TD-No. 1544, World Meteorological Organization, Geneva, 2010.
Nitu, R., Alastrue, J., Collado, J. L., and Buisan, S.: WMO – SPICE Un experimento internacional para mejorar las observaciones de la nieve, “Tiempo y Clima”, 50, Bulletin of Spanish Meteorological Society http://pkp.ame-web.org/index.php/TyC (last access: 1 January 2017), 2015.
Pons, M. R., San-Martín, D., Herrera, S., and Gutiérrez, J. M.: Snow trends in Northern Spain: analysis and simulation with statistical downscaling methods, Int. J. Climatol., 30, 1795–1806, https://doi.org/10.1002/joc.2016, 2010.
Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J.,Thériault, J., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Cristanelli, S., and Gutmann, E.: How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed, B. Am. Meteorol. Soc., 93, 811–829, https://doi.org/10.1175/BAMS-D-11-00052.1, 2012.
Rasmussen, R., Landolt, S., Baker, B., Kochendorfer, J., Collins, B., Colli, M., Lanza, L., and Theriault, J.: Examination of the Performance of Single Alter Shielded and Unshielded Snow gauges Using Observations from the Marshall Field Site during the SPICE WMO Field Program and Numerical Model Simulations, WMO, IOM 116, TECO-2014, 2014.
Savina, M., Schäppi, B., Molnar, P., Burlando, P., and Servruk, B.: Comparison of a tipping-bucket and electronic weighing precipitation gage for snowfall, Atmos. Res., 103, 45–51, https://doi.org/10.1016/j.atmosres.2011.06.010, 2012.
Scaff, L., Yang, D., Li, Y., and Mekis, E.: Inconsistency in precipitation measurements across the Alaska-Yukon border, The Cryosphere, 9, 2417–2428, https://doi.org/10.5194/tc-9-2417-2015, 2015.
Smith, C. D. and Yang, D.: An assessment of the GEONOR T-200B inside a large octagonal double fence wind shield as an automated reference for the gauge measurement of solid precipitation: Proceedings of the 90th AMS Annual Meeting, American Met. Soc., Atlanta, GA, 2010.
Thériault, J., Rasmussen, R., Ikeda, K., and Landolt, S.: Dependence of snow gauge collection efficiency on snowflake characteristics, J. Appl. Meteorol. Clim., 51, 745–762, 2012.
Uhlmann, B., Goyette, S., and Beniston, M.: Sensitivity analysis of snow patterns in Swiss ski resorts to shifts in temperature precipitation and humidity under condition of climate change, Int. J. Climatol., 29, 1048–1055, https://doi.org/10.1002/joc.1786, 2009.
Vicente-Serrano, S. M., Lorenzo-Lacruz, J., López-Moreno, J. I., Beguería, S., Morán-Tejeda, E., and El Kenawy, A.: The 2010 extreme winter North Atlantic Oscillation in Iberian precipitation: anomalies, driving mechanisms and future projections, Clim. Res., 46, 51–65, 2011.
Vicente-Serrano, S., López-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A. García-Ruiz, J. M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., and Espejo, F.: Evidence of increasing drought severity caused by temperature rise in southern Europe, Environ. Res. Lett., 9, 44001–44010, 2014.
WMO: Guide to Meteorological Instruments and Methods of Observation (CIMO Guide), WMO-No. 8, 2014.
Wolff, M., Nitu, R., Earle, M., Joe, P., Kochendorfer, J., Rasmussen, R., Reverdin, A., Smith, C., Wong, K., Yang, D., and the SPICE-TEAM: WMO Solid Precipitation Intercomparison Experiment (SPICE): Report on the SPICE Field Working Reference System for precipitation amount, WMO, IOM no. 116, TECO, 2014.
Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan, T., and Brækkan, R.: Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study, Hydrol. Earth Syst. Sci., 19, 951–967, https://doi.org/10.5194/hess-19-951-2015, 2015.
Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Elomaa, E., Gunther, T., Bates, R., Pangburn, T., Hanson, C. L., Emerson, D., Copaciu, V., and Milkovic, J.: Accuracy of tretyakov precipitation gauge: Result of wmo intercomparison, Hydrol. Process., 9, 877–895, https://doi.org/10.1002/hyp.3360090805, 1995.
Yang, D., Goodison, B. E., Metcalfe, J. R., Golubev, V. S., Bates, R., Pangburn, T., and Hanson, C. L.: Accuracy of NWS 8-inch standard non-recording precipitation gauge: Result and application of WMO Intercomparison, J. Atmos. Ocean. Tech., 15, 54–68, 1998a.
Yang, D., Goodison, B. E., Benson, C. S.,and Ishida, S.: Adjustment of daily precipitation at 10 climate stations in Alaska: Application of WMO Inter-comparison results, Water Resour. Res., 34, 241–256, 1998b.
Zweifel, A. and Sevruk, B.: Comparative accuracy of solid precipitation measurement using heated recording gauges in the Alps, WCRP Workshop on Determination of Solid Precipitation in Cold Climate Regions, Fairbanks, Alaska, 2002.
Short summary
Within the framework of the WMO-SPICE (Solid Precipitation Intercomparison Experiment) the Thies tipping bucket precipitation gauge, widely used at AEMET, was assessed against the SPICE reference.
Most countries use tipping buckets and for this reason the underestimation of snowfall precipitation is a large-scale problem.
The methodology presented here can be used by other national weather services to test precipitation bias corrections and to identify regions where errors are higher.
Within the framework of the WMO-SPICE (Solid Precipitation Intercomparison Experiment) the Thies...