Articles | Volume 10, issue 4
https://doi.org/10.5194/amt-10-1359-2017
https://doi.org/10.5194/amt-10-1359-2017
Research article
 | 
10 Apr 2017
Research article |  | 10 Apr 2017

Analysis of geostationary satellite-derived cloud parameters associated with environments with high ice water content

Adrianus de Laat, Eric Defer, Julien Delanoë, Fabien Dezitter, Amanda Gounou, Alice Grandin, Anthony Guignard, Jan Fokke Meirink, Jean-Marc Moisselin, and Frédéric Parol

Related authors

Assessment of satellite observation-based wildfire emissions inventories using TROPOMI data and IFS-COMPO model simulations
Adrianus de Laat, Vincent Huijnen, Niels Andela, and Matthias Forkel
EGUsphere, https://doi.org/10.5194/egusphere-2024-732,https://doi.org/10.5194/egusphere-2024-732, 2024
Short summary
The Antarctic stratospheric nitrogen hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed by Sentinel-5p TROPOMI
Adrianus de Laat, Jos van Geffen, Piet Stammes, Ronald van der A, Henk Eskes, and J. Pepijn Veefkind
Atmos. Chem. Phys., 24, 4511–4535, https://doi.org/10.5194/acp-24-4511-2024,https://doi.org/10.5194/acp-24-4511-2024, 2024
Short summary
Analysis of properties of the 19 February 2018 volcanic eruption of Mount Sinabung in S5P/TROPOMI and Himawari-8 satellite data
Adrianus de Laat, Margarita Vazquez-Navarro, Nicolas Theys, and Piet Stammes
Nat. Hazards Earth Syst. Sci., 20, 1203–1217, https://doi.org/10.5194/nhess-20-1203-2020,https://doi.org/10.5194/nhess-20-1203-2020, 2020
Short summary
Tracing the second stage of ozone recovery in the Antarctic ozone-hole with a "big data" approach to multivariate regressions
A. T. J. de Laat, R. J. van der A, and M. van Weele
Atmos. Chem. Phys., 15, 79–97, https://doi.org/10.5194/acp-15-79-2015,https://doi.org/10.5194/acp-15-79-2015, 2015
Short summary
Validation of nine years of MOPITT V5 NIR using MOZAIC/IAGOS measurements: biases and long-term stability
A. T. J. de Laat, I. Aben, M. Deeter, P. Nédélec, H. Eskes, J.-L. Attié, P. Ricaud, R. Abida, L. El Amraoui, and J. Landgraf
Atmos. Meas. Tech., 7, 3783–3799, https://doi.org/10.5194/amt-7-3783-2014,https://doi.org/10.5194/amt-7-3783-2014, 2014

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024,https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Marine cloud base height retrieval from MODIS cloud properties using machine learning
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024,https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary

Cited articles

Ackerman, A. S., Fridlind, A. M., Grandin, A., Dezitter, F., Weber, M., Strapp, J. W., and Korolev, A. V.: High ice water content at low radar reflectivity near deep convection – Part 2: Evaluation of microphysical pathways in updraft parcel simulations, Atmos. Chem. Phys., 15, 11729–11751, https://doi.org/10.5194/acp-15-11729-2015, 2015.
ADAGUC (Atmospheric data access for the geospatial user community): available at: http://adaguc.knmi.nl/, last access: March 2015.
Autonès, F.: Algorithm Theoretical Basis Document for “Rapid Development Thunderstorms” (RDT-PGE11 v2.3), SAF/NWC/CDOP/MFT/SCI/ATBD/11, available at: http://www.nwcsaf.org/AemetWebContents/ScientificDocumentation/Documentation/MSG/SAF-NWC-CDOP2-MFT-SCI-VR-11_v3.0.pdf, 2012.
Bragg, M. B., Basar, T., Perkins, W. R., Selig, M. S., Voulgaris, P. G., Melody, J. W., and Sarter, N. B.: Smart icing systems for aircraft icing safety, AIAA Paper, 813, 2002.
Download
Short summary
In-flight icing is an important aviation hazard which is still poorly understood, but consensus is that the presence of high ice water content is a necessary condition. For the European High Altitude Ice Crystals project a geostationary satellite remote-sensing mask has been developed for detection of atmospheric cloud environments where high ice water content is likely to occur. The mask performs satisfactory when compared against independent satellite ice water content measurements.