Articles | Volume 10, issue 1
Atmos. Meas. Tech., 10, 155–165, 2017
https://doi.org/10.5194/amt-10-155-2017
Atmos. Meas. Tech., 10, 155–165, 2017
https://doi.org/10.5194/amt-10-155-2017

Research article 11 Jan 2017

Research article | 11 Jan 2017

Uncertainties of ground-based microwave radiometer retrievals in zenith and off-zenith observations under snow conditions

Wengang Zhang et al.

Related authors

Evaluation and Application of Precipitable Water Vapor Product from MERSI-II onboard the Fengyun-3D Satellite
Wengang Zhang, Ling Wang, Yang Yu, Guirong Xu, Xiuqing Hu, Zhikang Fu, and Chunguang Cui
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-236,https://doi.org/10.5194/amt-2021-236, 2021
Revised manuscript under review for AMT
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Something fishy going on? Evaluating the Poisson hypothesis for rainfall estimation using intervalometers: results from an experiment in Tanzania
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021,https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and higher-order moments at the forest–air interface
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021,https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Characterizing and correcting the warm bias observed in AMDAR temperature observations
Siebren de Haan, Paul M. A. de Jong, and Jitze van der Meulen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-519,https://doi.org/10.5194/amt-2020-519, 2021
Revised manuscript accepted for AMT
Short summary
Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021,https://doi.org/10.5194/amt-14-2167-2021, 2021
Short summary
Smartphone pressure data: quality control and impact on atmospheric analysis
Rumeng Li, Qinghong Zhang, Juanzhen Sun, Yun Chen, Lili Ding, and Tian Wang
Atmos. Meas. Tech., 14, 785–801, https://doi.org/10.5194/amt-14-785-2021,https://doi.org/10.5194/amt-14-785-2021, 2021
Short summary

Cited articles

Chan, P. W.: Performance and application of a multi-wavelength, ground-based microwave radiometer in intense convective weather, Meteorol. Z., 18, 253–265, https://doi.org/10.1127/0941-2948/2009/0375, 2009.
Chan, P. W. and Hon, K. K.: Performance of instability indices of the troposphere as derived from a ground-based microwave radiometer. The 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, Washington, DC, USA, 1–4 March 2010, 2010.
Cimini, D., Campos, E., Ware, R., Albers, S., Giuliani, G., Oreamuno, J., Joe, P., Koch, S. E., Cober, S., and Westwater, E.: Thermodynamic atmospheric profiling during the 2010 winter olympicsusingground-based microwave radiometry, IEEE T. Geosci. Remote, 49, 4959–4969, https://doi.org/10.1109/TGRS.2011.2154337, 2011.
Cimini, D., Nelson, M., Güldner, J., and Ware, R.: Forecast indices from a ground-based microwave radiometer for operational meteorology, Atmos. Meas. Tech., 8, 315–333, https://doi.org/10.5194/amt-8-315-2015, 2015.
Kneifel, S., Löhnert, U., Battaglia, A., Crewell, S., and Siebler, D.: Snow scattering signals in ground-based passive microwave radiometer measurements, J. Geophys. Res., 115, D16214, https://doi.org/10.1029/2010JD013856, 2010.
Download
Short summary
A comparison between a microwave radiometer and radiosonde is carried out, and performances of zenith and off-zenith observations during snowfall are shown. In off-zenith observations, the effect of snow is obviously mitigated, and the deviation between microwave radiometer and radiosonde is small. With the aid of off-zenith observation, reliable thermodynamic atmospheric profiles can be collected, and those will be useful for the analysis and forecasting of severe convective weather.