Articles | Volume 10, issue 5
https://doi.org/10.5194/amt-10-1893-2017
https://doi.org/10.5194/amt-10-1893-2017
Research article
 | 
30 May 2017
Research article |  | 30 May 2017

Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar

Marco de Bruine, Arnoud Apituley, David Patrick Donovan, Hendrik Klein Baltink, and Marijn Jorrit de Haij

Related authors

Explicit aerosol–cloud interactions in the Dutch Atmospheric Large-Eddy Simulation model DALES4.1-M7
Marco de Bruine, Maarten Krol, Jordi Vilà-Guerau de Arellano, and Thomas Röckmann
Geosci. Model Dev., 12, 5177–5196, https://doi.org/10.5194/gmd-12-5177-2019,https://doi.org/10.5194/gmd-12-5177-2019, 2019
Short summary
Age of air as a diagnostic for transport timescales in global models
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109–3130, https://doi.org/10.5194/gmd-11-3109-2018,https://doi.org/10.5194/gmd-11-3109-2018, 2018
Short summary
The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0
Marco de Bruine, Maarten Krol, Twan van Noije, Philippe Le Sager, and Thomas Röckmann
Geosci. Model Dev., 11, 1443–1465, https://doi.org/10.5194/gmd-11-1443-2018,https://doi.org/10.5194/gmd-11-1443-2018, 2018
Short summary
Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere
Andreas Ostler, Ralf Sussmann, Prabir K. Patra, Sander Houweling, Marko De Bruine, Gabriele P. Stiller, Florian J. Haenel, Johannes Plieninger, Philippe Bousquet, Yi Yin, Marielle Saunois, Kaley A. Walker, Nicholas M. Deutscher, David W. T. Griffith, Thomas Blumenstock, Frank Hase, Thorsten Warneke, Zhiting Wang, Rigel Kivi, and John Robinson
Atmos. Meas. Tech., 9, 4843–4859, https://doi.org/10.5194/amt-9-4843-2016,https://doi.org/10.5194/amt-9-4843-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Observing atmospheric rivers using multi-GNSS airborne radio occultation: system description and data evaluation
Bing Cao, Jennifer S. Haase, Michael J. Murphy Jr., and Anna M. Wilson
Atmos. Meas. Tech., 18, 3361–3392, https://doi.org/10.5194/amt-18-3361-2025,https://doi.org/10.5194/amt-18-3361-2025, 2025
Short summary
Evolution of wind field in the atmospheric boundary layer using multiple-source observations during the passage of Super Typhoon Doksuri (2305)
Xiaoye Wang, Jing Xu, Songhua Wu, Qichao Wang, Guangyao Dai, Peizhi Zhu, Zhizhong Su, Sai Chen, Xiaomeng Shi, and Mengqi Fan
Atmos. Meas. Tech., 18, 3305–3320, https://doi.org/10.5194/amt-18-3305-2025,https://doi.org/10.5194/amt-18-3305-2025, 2025
Short summary
Observed impact of the GNSS clock data rate on radio occultation bending angles for Sentinel-6A and COSMIC-2
Sebastiano Padovan, Axel von Engeln, Saverio Paolella, Yago Andres, Chad R. Galley, Riccardo Notarpietro, Veronica Rivas Boscan, Francisco Sancho, Francisco Martin Alemany, Nicolas Morew, and Christian Marquardt
Atmos. Meas. Tech., 18, 3217–3228, https://doi.org/10.5194/amt-18-3217-2025,https://doi.org/10.5194/amt-18-3217-2025, 2025
Short summary
A new method to retrieve relative humidity profiles from a synergy of Raman lidar, microwave radiometer, and satellite
Chengli Ji, Qiankai Jin, Feilong Li, Yuyang Liu, Zhicheng Wang, Jiajia Mao, Xiaoyu Ren, Yan Xiang, Wanlin Jian, Zhenyi Chen, and Peitao Zhao
Atmos. Meas. Tech., 18, 3179–3191, https://doi.org/10.5194/amt-18-3179-2025,https://doi.org/10.5194/amt-18-3179-2025, 2025
Short summary
Combining commercial microwave links and weather radar for classification of dry snow and rainfall
Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco (C. Z.) van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, and Vegard Nilsen
Atmos. Meas. Tech., 18, 2279–2293, https://doi.org/10.5194/amt-18-2279-2025,https://doi.org/10.5194/amt-18-2279-2025, 2025
Short summary

Cited articles

Angevine, W. M., White, A. B., and Avery, S. K.: Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler, Bound.-Lay. Meteorol., 68, 375–385, https://doi.org/10.1007/BF00706797, 1994.
Apituley, A., Russchenberg, H., van der Marel, H., Boers, R., ten Brink, H., de Leeuw, G., Uijlenhoet, R., Arbresser-Rastburg, B., and Röckmann, T.: Overview Of Research And Networking With Ground Based Remote Sensing For Atmospheric Profiling At The Cabauw Experimental Site For Atmospheric Research (CESAR) – The Netherlands, in: Proceedings IGARSS 2008, Boston, Massachusetts, III, 903–906, 2008.
Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008.
Baltink, H. K.: CESAR-database, available at: http://www.cesar-database.nl (last access: 25 May 2017), 2016.
Beyrich, F.: Mixing-height estimation in the convective boundary layer using sodar data, Bound.-Lay. Meteorol., 74, 1–18, https://doi.org/10.1007/BF00715708, 1995.
Download
Short summary
To know how air pollution moves away from their sources, we need to know the height of the pollution. We use a laser instrument that detects particles of air pollution to precisely measure the height of the particles. Now we want to detect the layer where the pollution is. As the height of this layer changes with time it is difficult to automatically follow the correct layer. Pathfinder, which works like route planners that find the shortest way, improves this task.
Share