Articles | Volume 10, issue 9
https://doi.org/10.5194/amt-10-3547-2017
https://doi.org/10.5194/amt-10-3547-2017
Research article
 | 
29 Sep 2017
Research article |  | 29 Sep 2017

Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks

Johan Strandgren, Luca Bugliaro, Frank Sehnke, and Leon Schröder

Related authors

The behavior of high-CAPE (convective available potential energy) summer convection in large-domain large-eddy simulations with ICON
Harald Rybka, Ulrike Burkhardt, Martin Köhler, Ioanna Arka, Luca Bugliaro, Ulrich Görsdorf, Ákos Horváth, Catrin I. Meyer, Jens Reichardt, Axel Seifert, and Johan Strandgren
Atmos. Chem. Phys., 21, 4285–4318, https://doi.org/10.5194/acp-21-4285-2021,https://doi.org/10.5194/acp-21-4285-2021, 2021
Short summary
Towards spaceborne monitoring of localized CO2 emissions: an instrument concept and first performance assessment
Johan Strandgren, David Krutz, Jonas Wilzewski, Carsten Paproth, Ilse Sebastian, Kevin R. Gurney, Jianming Liang, Anke Roiger, and André Butz
Atmos. Meas. Tech., 13, 2887–2904, https://doi.org/10.5194/amt-13-2887-2020,https://doi.org/10.5194/amt-13-2887-2020, 2020
Short summary
Spectral sizing of a coarse-spectral-resolution satellite sensor for XCO2
Jonas Simon Wilzewski, Anke Roiger, Johan Strandgren, Jochen Landgraf, Dietrich G. Feist, Voltaire A. Velazco, Nicholas M. Deutscher, Isamu Morino, Hirofumi Ohyama, Yao Té, Rigel Kivi, Thorsten Warneke, Justus Notholt, Manvendra Dubey, Ralf Sussmann, Markus Rettinger, Frank Hase, Kei Shiomi, and André Butz
Atmos. Meas. Tech., 13, 731–745, https://doi.org/10.5194/amt-13-731-2020,https://doi.org/10.5194/amt-13-731-2020, 2020
Short summary
Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI
Johan Strandgren, Jennifer Fricker, and Luca Bugliaro
Atmos. Meas. Tech., 10, 4317–4339, https://doi.org/10.5194/amt-10-4317-2017,https://doi.org/10.5194/amt-10-4317-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Infrared radiometric image classification and segmentation of cloud structures using a deep-learning framework from ground-based infrared thermal camera observations
Kélian Sommer, Wassim Kabalan, and Romain Brunet
Atmos. Meas. Tech., 18, 2083–2101, https://doi.org/10.5194/amt-18-2083-2025,https://doi.org/10.5194/amt-18-2083-2025, 2025
Short summary
Algorithm for continual monitoring of fog based on geostationary satellite imagery
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
Atmos. Meas. Tech., 18, 1927–1941, https://doi.org/10.5194/amt-18-1927-2025,https://doi.org/10.5194/amt-18-1927-2025, 2025
Short summary
Mitigation of satellite OCO-2 CO2 biases in the vicinity of clouds with 3D calculations using the Education and Research 3D Radiative Transfer Toolbox (EaR3T)
Yu-Wen Chen, K. Sebastian Schmidt, Hong Chen, Steven T. Massie, Susan S. Kulawik, and Hironobu Iwabuchi
Atmos. Meas. Tech., 18, 1859–1884, https://doi.org/10.5194/amt-18-1859-2025,https://doi.org/10.5194/amt-18-1859-2025, 2025
Short summary
Wet-radome attenuation in ARM cloud radars and its utilization in radar calibration using disdrometer measurements
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025,https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Tomographic reconstruction algorithms for retrieving two-dimensional ice cloud microphysical parameters using along-track (sub)millimeter-wave radiometer observations
Yuli Liu and Ian Stuart Adams
Atmos. Meas. Tech., 18, 1659–1674, https://doi.org/10.5194/amt-18-1659-2025,https://doi.org/10.5194/amt-18-1659-2025, 2025
Short summary

Cited articles

Ackerman, S. A., Smith, W. L., Revercomb, H. E., and Spinhirne, J. D.: The 27–28 October 1986 FIRE IFO Cirrus Case Study: Spectral Properties of Cirrus Clouds in the 8–12 µm Window, Mon. Weather Rev., 118, 2377–2388, https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2, 1990.
Ackerman, S., Holz, R., Frey, R., Eloranta, E., Maddux, B., and McGill, M.: Cloud detection with MODI S. Part II: validation, J. Atmos. Ocean. Tech., 25, 1073–1086, 2008.
Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998.
Avery, M., Winker, D., Heymsfield, A., Vaughan, M., Young, S., Hu, Y., and Trepte, C.: Cloud ice water content retrieved from the CALIOP space-based lidar, Geophys. Res. Lett., 39, L05808, https://doi.org/10.1029/2011GL050545, 2012.
Bergstra, J. and Bengio, Y.: Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13, 281–305, 2012.
Download
Short summary
The new algorithm CiPS is presented and validated. CiPS detects cirrus clouds, identifies opaque pixels and retrieves the corresponding optical thickness, cloud top height and ice water path from the geostationary imager MSG/SEVIRI. CiPS utilises a set of four artificial neural networks trained with space-borne lidar data, thermal MSG/SEVIRI observations, model data and auxiliary data. To demonstrate the capabilities of CiPS, the life cycle of a thin cirrus cloud is analysed.
Share