Articles | Volume 11, issue 5
Atmos. Meas. Tech., 11, 3131–3144, 2018
https://doi.org/10.5194/amt-11-3131-2018
Atmos. Meas. Tech., 11, 3131–3144, 2018
https://doi.org/10.5194/amt-11-3131-2018

Research article 31 May 2018

Research article | 31 May 2018

Effects of temporal averaging on short-term irradiance variability under mixed sky conditions

Gerald M. Lohmann and Adam H. Monahan

Related authors

A study of local turbulence and anisotropy during the afternoon and evening transition with an unmanned aerial system and mesoscale simulation
Astrid Lampert, Falk Pätzold, Maria Antonia Jiménez, Lennart Lobitz, Sabrina Martin, Gerald Lohmann, Guylaine Canut, Dominique Legain, Jens Bange, Dani Martínez-Villagrasa, and Joan Cuxart
Atmos. Chem. Phys., 16, 8009–8021, https://doi.org/10.5194/acp-16-8009-2016,https://doi.org/10.5194/acp-16-8009-2016, 2016
Short summary
Local short-term variability in solar irradiance
Gerald M. Lohmann, Adam H. Monahan, and Detlev Heinemann
Atmos. Chem. Phys., 16, 6365–6379, https://doi.org/10.5194/acp-16-6365-2016,https://doi.org/10.5194/acp-16-6365-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Smartphone pressure data: quality control and impact on atmospheric analysis
Rumeng Li, Qinghong Zhang, Juanzhen Sun, Yun Chen, Lili Ding, and Tian Wang
Atmos. Meas. Tech., 14, 785–801, https://doi.org/10.5194/amt-14-785-2021,https://doi.org/10.5194/amt-14-785-2021, 2021
Short summary
Validation of Aeolus winds using radiosonde observations and NWP model equivalents
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-404,https://doi.org/10.5194/amt-2020-404, 2020
Preprint under review for AMT
Short summary
Automated precipitation monitoring with the Thies disdrometer: biases and ways for improvement
Michael Fehlmann, Mario Rohrer, Annakaisa von Lerber, and Markus Stoffel
Atmos. Meas. Tech., 13, 4683–4698, https://doi.org/10.5194/amt-13-4683-2020,https://doi.org/10.5194/amt-13-4683-2020, 2020
Short summary
More science with less: evaluation of a 3D-printed weather station
Adam Theisen, Max Ungar, Bryan Sheridan, and Bradley G. Illston
Atmos. Meas. Tech., 13, 4699–4713, https://doi.org/10.5194/amt-13-4699-2020,https://doi.org/10.5194/amt-13-4699-2020, 2020
Short summary
Characteristics and performance of wind profiles as observed by the radar wind profiler network of China
Boming Liu, Jianping Guo, Wei Gong, Lijuan Shi, Yong Zhang, and Yingying Ma
Atmos. Meas. Tech., 13, 4589–4600, https://doi.org/10.5194/amt-13-4589-2020,https://doi.org/10.5194/amt-13-4589-2020, 2020
Short summary

Cited articles

Anvari, M., Lohmann, G., Wächter, M., Milan, P., Lorenz, E., Heinemann, D., Tabar, M. R. R., and Peinke, J.: Short term fluctuations of wind and solar power systems, New J. Phys., 18, 063027, https://doi.org/10.1088/1367-2630/18/6/063027, 2016.
Aryaputera, A. W., Yang, D., Zhao, L., and Walsh, W. M.: Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging, Sol. Energy, 122, 1266–1278, https://doi.org/10.1016/j.solener.2015.10.023, 2015.
Belhaouas, N., Cheikh, M.-S. A., Agathoklis, P., Oularbi, M.-R., Amrouche, B., Sedraoui, K., and Djilali, N.: PV array power output maximization under partial shading using new shifted PV array arrangements, Appl. Energ., 187, 326–337, https://doi.org/10.1016/j.apenergy.2016.11.038, 2017.
Bosch, J. and Kleissl, J.: Cloud motion vectors from a network of ground sensors in a solar power plant, Sol. Energy, 95, 13–20, https://doi.org/10.1016/j.solener.2013.05.027, 2013.
Calif, R., Schmitt, F. G., Huang, Y., and Soubdhan, T.: Intermittency study of high frequency global solar radiation sequences under a tropical climate, Sol. Energy, 98, 349–365, https://doi.org/10.1016/j.solener.2013.09.018, 2013.
Download
Short summary
Using high-resolution surface irradiance data with original temporal resolutions between 0.01 s and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability.