Articles | Volume 11, issue 1
Atmos. Meas. Tech., 11, 441–458, 2018
https://doi.org/10.5194/amt-11-441-2018
Atmos. Meas. Tech., 11, 441–458, 2018
https://doi.org/10.5194/amt-11-441-2018

Research article 22 Jan 2018

Research article | 22 Jan 2018

Hotplate precipitation gauge calibrations and field measurements

Nicholas Zelasko et al.

Related authors

Wintertime aerosol measurements during the Chilean Coastal Orographic Precipitation Experiment
Sara Lynn Fults, Adam K. Massmann, Aldo Montecinos, Elisabeth Andrews, David E. Kingsmill, Justin R. Minder, René D. Garreaud, and Jefferson R. Snider
Atmos. Chem. Phys., 19, 12377–12396, https://doi.org/10.5194/acp-19-12377-2019,https://doi.org/10.5194/acp-19-12377-2019, 2019
Short summary
A novel approach to calibrating a photoacoustic absorption spectrometer using polydisperse absorbing aerosol
Katie Foster, Rudra Pokhrel, Matthew Burkhart, and Shane Murphy
Atmos. Meas. Tech., 12, 3351–3363, https://doi.org/10.5194/amt-12-3351-2019,https://doi.org/10.5194/amt-12-3351-2019, 2019
Short summary
Ice crystal concentrations in wave clouds: dependencies on temperature, D > 0.5 μm aerosol particle concentration, and duration of cloud processing
L. Peng, J. R. Snider, and Z. Wang
Atmos. Chem. Phys., 15, 6113–6125, https://doi.org/10.5194/acp-15-6113-2015,https://doi.org/10.5194/acp-15-6113-2015, 2015
Short summary
Time-dependent freezing rate parcel model
G. Vali and J. R. Snider
Atmos. Chem. Phys., 15, 2071–2079, https://doi.org/10.5194/acp-15-2071-2015,https://doi.org/10.5194/acp-15-2071-2015, 2015
Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles
P. J. DeMott, A. J. Prenni, G. R. McMeeking, R. C. Sullivan, M. D. Petters, Y. Tobo, M. Niemand, O. Möhler, J. R. Snider, Z. Wang, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015,https://doi.org/10.5194/acp-15-393-2015, 2015
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Something fishy going on? Evaluating the Poisson hypothesis for rainfall estimation using intervalometers: results from an experiment in Tanzania
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021,https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and higher-order moments at the forest–air interface
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021,https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Characterizing and correcting the warm bias observed in AMDAR temperature observations
Siebren de Haan, Paul M. A. de Jong, and Jitze van der Meulen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-519,https://doi.org/10.5194/amt-2020-519, 2021
Revised manuscript accepted for AMT
Short summary
Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021,https://doi.org/10.5194/amt-14-2167-2021, 2021
Short summary
Smartphone pressure data: quality control and impact on atmospheric analysis
Rumeng Li, Qinghong Zhang, Juanzhen Sun, Yun Chen, Lili Ding, and Tian Wang
Atmos. Meas. Tech., 14, 785–801, https://doi.org/10.5194/amt-14-785-2021,https://doi.org/10.5194/amt-14-785-2021, 2021
Short summary

Cited articles

Albrecht, B., Poellot, M., and Cox, S. K.: Pyrgeometer measurements from aircraft, Rev. Sci. Instrum., 45, 33–38, 1974.
Borkhuu, B.: Snowfall at a high-elevation site: Comparisons of six measurement techniques, MS Thesis, Department of Atmospheric Science, University of Wyoming, 2009.
Boudala, F. S., Rasmussen, R., Isaac, G. A., and Scott, B.: Performance of hot plate for measureing solid precipitation in complex terrain during the 2010 Vancouver Winter Olympics, J. Atmos. Ocean. Tech., 31, 437–446, 2014.
Brandes, E. A., Ikeda, K., Zhang, G., Schonhuber, M., and Rasmussen, R. M.: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer, J. Appl. Meteorol. Clim., 46, 634–650, 2007.
Brock, F. V. and Richardson, S. J.: Meteorological Measurement Systems, Oxford University Press, New York, 304 pp., 2001.
Download
Short summary
The hotplate precipitation gauge has the potential to solve some problems with conventional precipitation gauge measurements, especially for snowfall. This paper extends the seminal published work, Rasmussen et al. (2011). We assert that the precipitation rate algorithm we have developed for the hotplate is an improvement on that which was previously published.