Articles | Volume 11, issue 2
https://doi.org/10.5194/amt-11-861-2018
https://doi.org/10.5194/amt-11-861-2018
Research article
 | 
14 Feb 2018
Research article |  | 14 Feb 2018

Three-channel single-wavelength lidar depolarization calibration

Emily M. McCullough, Robert J. Sica, James R. Drummond, Graeme J. Nott, Christopher Perro, and Thomas J. Duck

Related authors

Finely laminated Arctic mixed-phase clouds occur frequently and are correlated with snow
Emily M. McCullough, Robin Wing, and James R. Drummond
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-186,https://doi.org/10.5194/acp-2020-186, 2020
Revised manuscript not accepted
Short summary
Lidar measurements of thin laminations within Arctic clouds
Emily M. McCullough, James R. Drummond, and Thomas J. Duck
Atmos. Chem. Phys., 19, 4595–4614, https://doi.org/10.5194/acp-19-4595-2019,https://doi.org/10.5194/acp-19-4595-2019, 2019
Short summary
Lidar temperature series in the middle atmosphere as a reference data set – Part 2: Assessment of temperature observations from MLS/Aura and SABER/TIMED satellites
Robin Wing, Alain Hauchecorne, Philippe Keckhut, Sophie Godin-Beekmann, Sergey Khaykin, and Emily M. McCullough
Atmos. Meas. Tech., 11, 6703–6717, https://doi.org/10.5194/amt-11-6703-2018,https://doi.org/10.5194/amt-11-6703-2018, 2018
Short summary
Lidar temperature series in the middle atmosphere as a reference data set – Part 1: Improved retrievals and a 20-year cross-validation of two co-located French lidars
Robin Wing, Alain Hauchecorne, Philippe Keckhut, Sophie Godin-Beekmann, Sergey Khaykin, Emily M. McCullough, Jean-François Mariscal, and Éric d'Almeida
Atmos. Meas. Tech., 11, 5531–5547, https://doi.org/10.5194/amt-11-5531-2018,https://doi.org/10.5194/amt-11-5531-2018, 2018
Short summary
Depolarization calibration and measurements using the CANDAC Rayleigh–Mie–Raman lidar at Eureka, Canada
Emily M. McCullough, Robert J. Sica, James R. Drummond, Graeme Nott, Christopher Perro, Colin P. Thackray, Jason Hopper, Jonathan Doyle, Thomas J. Duck, and Kaley A. Walker
Atmos. Meas. Tech., 10, 4253–4277, https://doi.org/10.5194/amt-10-4253-2017,https://doi.org/10.5194/amt-10-4253-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024,https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary

Cited articles

Cesana, G., Chepfer, H., Winker, D., Getzewich, B., Cai, X., Jourdan, O., Mioche, G., Okamoto, H., Hagihara, Y., Noel, V., and Reverdy, M.: Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO, J. Geophys. Res.-Atmos., 121, 5788–5808, 2016.
Freudenthaler, V.: About the effects of polarising optics on lidar signals and the Δ90 calibration, Atmos. Meas. Tech., 9, 4181–4255, https://doi.org/10.5194/amt-9-4181-2016, 2016.
Gimmestad, G. G.: Reexamination of depolarization in lidar measurements, Appl. Optics, 47, 3795–3802, 2008.
Hogan, R. J., Francis, P. N., Flentje, H., Illingworth, A. J., Quante, M., and Pelon, J.: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE'98, Q. J. Roy. Meteor. Soc., 129, 2089–2116, https://doi.org/10.1256/rj.01.208, 2003.
Korolev, A. V., Isaac, G. A., Strapp, J. W., Cober, S. G., and Barker, H. W.: In situ measurements of liquid water content profiles in midlatitude stratiform clouds, Q. J. Roy. Meteor. Soc., 133, 1693–1699, https://doi.org/10.1002/qj.147, 2007.
Download
Short summary
Measuring the phase (liquid and ice) of Arctic clouds is essential for understanding the changing global climate. Using a lidar, two polarized signals are usually needed. At CRL lidar, one of these signals is small, so phase measurements have low resolution. Another method can use a large unpolarized signal in place of the small polarized signal. We show how to use the original low-resolution measurement to calibrate the new high-resolution method. At CRL, this gives 20 times higher resolution.