Articles | Volume 11, issue 2
https://doi.org/10.5194/amt-11-971-2018
https://doi.org/10.5194/amt-11-971-2018
Research article
 | 
19 Feb 2018
Research article |  | 19 Feb 2018

Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

Fredrick W. Irion, Brian H. Kahn, Mathias M. Schreier, Eric J. Fetzer, Evan Fishbein, Dejian Fu, Peter Kalmus, R. Chris Wilson, Sun Wong, and Qing Yue

Related authors

Characterization and evaluation of AIRS-based estimates of the deuterium content of water vapor
John R. Worden, Susan S. Kulawik, Dejian Fu, Vivienne H. Payne, Alan E. Lipton, Igor Polonsky, Yuguang He, Karen Cady-Pereira, Jean-Luc Moncet, Robert L. Herman, Fredrick W. Irion, and Kevin W. Bowman
Atmos. Meas. Tech., 12, 2331–2339, https://doi.org/10.5194/amt-12-2331-2019,https://doi.org/10.5194/amt-12-2331-2019, 2019
Short summary
Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation
Dejian Fu, Susan S. Kulawik, Kazuyuki Miyazaki, Kevin W. Bowman, John R. Worden, Annmarie Eldering, Nathaniel J. Livesey, Joao Teixeira, Fredrick W. Irion, Robert L. Herman, Gregory B. Osterman, Xiong Liu, Pieternel F. Levelt, Anne M. Thompson, and Ming Luo
Atmos. Meas. Tech., 11, 5587–5605, https://doi.org/10.5194/amt-11-5587-2018,https://doi.org/10.5194/amt-11-5587-2018, 2018
Instantaneous variance scaling of AIRS thermodynamic profiles using a circular area Monte Carlo approach
Jesse Dorrestijn, Brian H. Kahn, João Teixeira, and Fredrick W. Irion
Atmos. Meas. Tech., 11, 2717–2733, https://doi.org/10.5194/amt-11-2717-2018,https://doi.org/10.5194/amt-11-2717-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Predictions of failed satellite retrieval of air quality using machine learning
Edward Malina, Jure Brence, Jennifer Adams, Jovan Tanevski, Sašo Džeroski, Valentin Kantchev, and Kevin W. Bowman
Atmos. Meas. Tech., 18, 1689–1715, https://doi.org/10.5194/amt-18-1689-2025,https://doi.org/10.5194/amt-18-1689-2025, 2025
Short summary
Deep transfer learning method for seasonal TROPOMI XCH4 albedo correction
Alexander C. Bradley, Barbara Dix, Fergus Mackenzie, J. Pepijn Veefkind, and Joost A. de Gouw
Atmos. Meas. Tech., 18, 1675–1687, https://doi.org/10.5194/amt-18-1675-2025,https://doi.org/10.5194/amt-18-1675-2025, 2025
Short summary
Global retrieval of TROPOMI tropospheric HCHO and NO2 columns with improved consistency based on the updated Peking University OMI NO2 algorithm
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025,https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary
Quantitative estimate of several sources of uncertainty in drone-based methane emission measurements
Tannaz H. Mohammadloo, Matthew Jones, Bas van de Kerkhof, Kyle Dawson, Brendan J. Smith, Stephen Conley, Abigail Corbett, and Rutger IJzermans
Atmos. Meas. Tech., 18, 1301–1324, https://doi.org/10.5194/amt-18-1301-2025,https://doi.org/10.5194/amt-18-1301-2025, 2025
Short summary
Implementation and application of an improved phase spectrum determination scheme for Fourier transform spectrometry
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech., 18, 1257–1267, https://doi.org/10.5194/amt-18-1257-2025,https://doi.org/10.5194/amt-18-1257-2025, 2025
Short summary

Cited articles

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, 2003.
Baum, B. A., Yang, P., Nasiri, S., Heidinger, A. K., Heymsfield, A., and Li, J.: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm−1, J. Appl. Meteorol. Clim., 46, 423–434, 2007.
Blackwell, W. J.: A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data, IEEE T. Geosci. Remote, 43, 2535–2546, 2005.
Blumstein, D., Chalon, G., Carlier, T., Buil, C., Heìbert, P., Maciaszek, T., Ponce, G., Phulpin, T., Tournier, B., Simeìoni, D., Astruc, P., Clauss, A., Kayal, G., and Jegou, R.: IASI instrument: Technical overview and measured performances, in: Infrared Spaceborne Remote Sensing XII, edited by: Strojnik, M, Proc. SPIE, 5543, SPIE, Bellingham, WA, 2004.
Download
Short summary
We describe a new algorithm for the Atmospheric Infrared Sounder (AIRS) that uses its thermal infrared spectra directly rather than using “cloud-clearing.” By additionally modelling clouds within an AIRS field-of-view, we retrieve temperature and water vapor profiles on the AIRS ~13.5 km horizontal footprint (at nadir) rather than the ~45 km footprint of cloud-cleared spectra. Initial validation is presented, and avenues for future development are discussed.
Share