Articles | Volume 12, issue 7
https://doi.org/10.5194/amt-12-3825-2019
https://doi.org/10.5194/amt-12-3825-2019
Research article
 | 
12 Jul 2019
Research article |  | 12 Jul 2019

Method to retrieve cloud condensation nuclei number concentrations using lidar measurements

Wangshu Tan, Gang Zhao, Yingli Yu, Chengcai Li, Jian Li, Ling Kang, Tong Zhu, and Chunsheng Zhao

Related authors

Retrieval of diurnal properties of aerosol and surface from geostationary satellite Himawari-8 using multi-pixel approach
Chong Li, Oleg Dubovik, Jing Li, David Fuertes, Anton Lopatin, Pavel Litvinov, Tatsiana Lapyonok, Lukas Bindreiter, Christian Matar, Yiqi Chu, and Wangshu Tan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2694,https://doi.org/10.5194/egusphere-2025-2694, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Quality Control of Historical Temperature Data for Pure Rotational Raman Lidar Using Density-Based Clustering
Rongzheng Cao, Siying Chen, Wangshu Tan, Yixuan Xie, He Chen, Pan Guo, Rui Hu, Yinghong Yu, Jie Yu, and Shusen Yao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2650,https://doi.org/10.5194/egusphere-2024-2650, 2024
Preprint archived
Short summary
Study of the seasonal variation in Aeolus wind product performance over China using ERA5 and radiosonde data
Siying Chen, Rongzheng Cao, Yixuan Xie, Yinchao Zhang, Wangshu Tan, He Chen, Pan Guo, and Peitao Zhao
Atmos. Chem. Phys., 21, 11489–11504, https://doi.org/10.5194/acp-21-11489-2021,https://doi.org/10.5194/acp-21-11489-2021, 2021
Short summary
New correction method for the scattering coefficient measurements of a three-wavelength nephelometer
Jie Qiu, Wangshu Tan, Gang Zhao, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 4879–4891, https://doi.org/10.5194/amt-14-4879-2021,https://doi.org/10.5194/amt-14-4879-2021, 2021
Short summary
Determination of equivalent black carbon mass concentration from aerosol light absorption using variable mass absorption cross section
Weilun Zhao, Wangshu Tan, Gang Zhao, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1319–1331, https://doi.org/10.5194/amt-14-1319-2021,https://doi.org/10.5194/amt-14-1319-2021, 2021

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Producing aerosol size distributions consistent with optical particle counter measurements using space-based measurements of aerosol extinction coefficient
Nicholas Ernest, Larry W. Thomason, and Terry Deshler
Atmos. Meas. Tech., 18, 2957–2968, https://doi.org/10.5194/amt-18-2957-2025,https://doi.org/10.5194/amt-18-2957-2025, 2025
Short summary
Star photometry with all-sky cameras to retrieve aerosol optical depth at nighttime
Roberto Román, Daniel González-Fernández, Juan Carlos Antuña-Sánchez, Celia Herrero del Barrio, Sara Herrero-Anta, África Barreto, Victoria E. Cachorro, Lionel Doppler, Ramiro González, Christoph Ritter, David Mateos, Natalia Kouremeti, Gustavo Copes, Abel Calle, María José Granados-Muñoz, Carlos Toledano, and Ángel M. de Frutos
Atmos. Meas. Tech., 18, 2847–2875, https://doi.org/10.5194/amt-18-2847-2025,https://doi.org/10.5194/amt-18-2847-2025, 2025
Short summary
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, David P. Donovan, Gerd-Jan van Zadelhoff, and J. Pepijn Veefkind
Atmos. Meas. Tech., 18, 2553–2571, https://doi.org/10.5194/amt-18-2553-2025,https://doi.org/10.5194/amt-18-2553-2025, 2025
Short summary
Using neural networks for near-real-time aerosol retrievals from OMPS Limb Profiler measurements
Michael D. Himes, Ghassan Taha, Daniel Kahn, Tong Zhu, and Natalya A. Kramarova
Atmos. Meas. Tech., 18, 2523–2536, https://doi.org/10.5194/amt-18-2523-2025,https://doi.org/10.5194/amt-18-2523-2025, 2025
Short summary
Retrieval algorithm for aerosol effective height from the Geostationary Environment Monitoring Spectrometer (GEMS)
Sang Seo Park, Jhoon Kim, Yeseul Cho, Hanlim Lee, Junsung Park, Dong-Won Lee, Won-Jin Lee, and Deok-Rae Kim
Atmos. Meas. Tech., 18, 2241–2259, https://doi.org/10.5194/amt-18-2241-2025,https://doi.org/10.5194/amt-18-2241-2025, 2025
Short summary

Cited articles

Bedoya-Velásquez, A. E., Navas-Guzmán, F., Granados-Muñoz, M. J., Titos, G., Román, R., Casquero-Vera, J. A., Ortiz-Amezcua, P., Benavent-Oltra, J. A., de Arruda Moreira, G., Montilla-Rosero, E., Hoyos, C. D., Artiñano, B., Coz, E., Olmo-Reyes, F. J., Alados-Arboledas, L., and Guerrero-Rascado, J. L.: Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation, Atmos. Chem. Phys., 18, 7001–7017, https://doi.org/10.5194/acp-18-7001-2018, 2018. 
Bian, Y., Zhao, C., Xu, W., Kuang, Y., Tao, J., Wei, W., Ma, N., Zhao, G., Lian, S., Tan, W., and Barnes, J. E.: A novel method to retrieve the nocturnal boundary layer structure based on CCD laser aerosol detection system measurements, Remote Sens. Environ., 211, 38–47, https://doi.org/10.1016/j.rse.2018.04.007, 2018. 
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering by an Arbitrary Particle, in: Absorption and Scattering of Light by Small Particles, Wiley-VCH Verlag GmbH, Weinheim, 57–81, 2007. 
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571–658, 2013. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001. 
Download
Short summary
A new method to retrieve CCN number concentrations using multiwavelength Raman lidars is proposed. The method implements hygroscopic enhancements of backscatter and extinction with relative humidity to represent particle hygroscopicity. The retrieved CCN number concentrations are in good agreement with theoretical calculated values. Sensitivity tests indicate that retrieval error in CCN arises mostly from uncertainties in extinction coefficients and RH profiles.
Share