Articles | Volume 13, issue 6
https://doi.org/10.5194/amt-13-3147-2020
https://doi.org/10.5194/amt-13-3147-2020
Research article
 | 
15 Jun 2020
Research article |  | 15 Jun 2020

An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans

Alexis Hunzinger, Joseph C. Hardin, Nitin Bharadwaj, Adam Varble, and Alyssa Matthews

Related authors

General circulation models simulate negative liquid water path­–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
EGUsphere, https://doi.org/10.5194/egusphere-2024-4,https://doi.org/10.5194/egusphere-2024-4, 2024
Short summary
Examining the vertical heterogeneity of aerosols over the Southern Great Plains
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023,https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 2: assessing aerosols, clouds, and aerosol–cloud interactions via field campaign and long-term observations
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023,https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Opinion: A critical evaluation of the evidence for aerosol invigoration of deep convection
Adam C. Varble, Adele L. Igel, Hugh Morrison, Wojciech W. Grabowski, and Zachary J. Lebo
Atmos. Chem. Phys., 23, 13791–13808, https://doi.org/10.5194/acp-23-13791-2023,https://doi.org/10.5194/acp-23-13791-2023, 2023
Short summary
Droplet collection efficiencies estimated from satellite retrievals constrain effective radiative forcing of aerosol-cloud interactions
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
EGUsphere, https://doi.org/10.5194/egusphere-2023-2161,https://doi.org/10.5194/egusphere-2023-2161, 2023
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Improved RepVGG ground-based cloud image classification with attention convolution
Chaojun Shi, Leile Han, Ke Zhang, Hongyin Xiang, Xingkuan Li, Zibo Su, and Xian Zheng
Atmos. Meas. Tech., 17, 979–997, https://doi.org/10.5194/amt-17-979-2024,https://doi.org/10.5194/amt-17-979-2024, 2024
Short summary
An intercomparison of EarthCARE cloud, aerosol, and precipitation retrieval products
Shannon L. Mason, Howard W. Barker, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 17, 875–898, https://doi.org/10.5194/amt-17-875-2024,https://doi.org/10.5194/amt-17-875-2024, 2024
Short summary
First results of cloud retrieval from the Geostationary Environmental Monitoring Spectrometer
Bo-Ram Kim, Gyuyeon Kim, Minjeong Cho, Yong-Sang Choi, and Jhoon Kim
Atmos. Meas. Tech., 17, 453–470, https://doi.org/10.5194/amt-17-453-2024,https://doi.org/10.5194/amt-17-453-2024, 2024
Short summary
Thundercloud structures detected and analyzed based on coherent Doppler wind lidar
Kenan Wu, Tianwen Wei, Jinlong Yuan, Haiyun Xia, Xin Huang, Gaopeng Lu, Yunpeng Zhang, Feifan Liu, Baoyou Zhu, and Weidong Ding
Atmos. Meas. Tech., 16, 5811–5825, https://doi.org/10.5194/amt-16-5811-2023,https://doi.org/10.5194/amt-16-5811-2023, 2023
Short summary
Model-based evaluation of cloud geometry and droplet size retrievals from 2-D polarized measurements of specMACS
Lea Volkmer, Veronika Pörtge, Fabian Jakub, and Bernhard Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2023-2235,https://doi.org/10.5194/egusphere-2023-2235, 2023
Short summary

Cited articles

Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler weather radar: principles and applications, Cambridge University Press, New York, 2001. a
Gage, K., Williams, C., Johnston, P., Ecklund, W., Cifelli, R., Tokay, A., and Carter, D.: Doppler radar profilers as calibration tools for scanning radars, J. Appl. Meteor., 39, 2209–2222, https://doi.org/10.1175/1520-0450(2001)040<2209:DRPACT>2.0.CO;2, 2000.  a
Glover, K., Hardy, K., Hardy, T., Sullivan, W., and Michael, A.: Radar observations of insects in free flight, Science, 154, 967–972, 1966. a
Hardin, J.: Enhanced Relative Calibration Adjustment 1.0 release, figshare, Software, https://doi.org/10.6084/m9.figshare.12460385.v1, 2020. a
Louf, V., Protat, A., Warren, R., Collis, S., Wolff, D., Raunyiar, S., Jakob, C., and Petersen, W. A.: An Integrated Approach to Weather Radar Calibration and Monitoring Using Ground Clutter and Satellite Comparisons, J. Atmos. Ocean. Tech., 36, 17–39, https://doi.org/10.1175/JTECH-D-18-0007.1, 2019. a, b, c
Download
Short summary
The calibration of weather radars is one of the most dominant sources of errors hindering their use. This work takes a technique for tracking the changes in radar calibration using the radar clutter from the ground and extends it to higher-frequency research radars. It demonstrates that after modifications the technique is successful but that special care needs to be taken in its application at high frequencies. The technique is verified using data from multiple DOE ARM field campaigns.