Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1615-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-1615-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite imagery and products of the 16–17 February 2020 Saharan Air Layer dust event over the eastern Atlantic: impacts of water vapor on dust detection and morphology
Lewis Grasso
CORRESPONDING AUTHOR
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Daniel Bikos
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Jorel Torres
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
John F. Dostalek
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Ting-Chi Wu
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
John Forsythe
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Heather Q. Cronk
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Curtis J. Seaman
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Steven D. Miller
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Emily Berndt
NASA Marshall Space Flight Center, Short-term Prediction Research and Transition Center, Huntsville, AL, USA
Harry G. Weinman
NOAA/NWS Miami-South Florida Weather Forecast Office, Miami, FL, USA
Kennard B. Kasper
NOAA/NWS Florida Keys Weather Forecast Office, Key West, FL, USA
Related authors
Jeremy E. Solbrig, Steven D. Miller, Jianglong Zhang, Lewis Grasso, and Anton Kliewer
Atmos. Meas. Tech., 13, 165–190, https://doi.org/10.5194/amt-13-165-2020, https://doi.org/10.5194/amt-13-165-2020, 2020
Short summary
Short summary
New satellite sensors are able to view visible light, such as that emitted by cities, at night. It may be possible to use the light from cities to assess the amount of particulate matter in the atmosphere and the thickness of clouds. To do this we must understand how light emitted from the Earth's surface changes with time and viewing conditions. This study takes a step towards understanding the characteristics of light emitted by cities and its stability in time.
Steven D. Miller, Louie D. Grasso, Qijing Bian, Sonia M. Kreidenweis, Jack F. Dostalek, Jeremy E. Solbrig, Jennifer Bukowski, Susan C. van den Heever, Yi Wang, Xiaoguang Xu, Jun Wang, Annette L. Walker, Ting-Chi Wu, Milija Zupanski, Christine Chiu, and Jeffrey S. Reid
Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019, https://doi.org/10.5194/amt-12-5101-2019, 2019
Short summary
Short summary
Satellite–based detection of lofted mineral via infrared–window channels, well established in the literature, faces significant challenges in the presence of atmospheric moisture. Here, we consider a case featuring the juxtaposition of two dust plumes embedded within dry and moist air masses. The case is considered from the vantage points of numerical modeling, multi–sensor observations, and radiative transfer theory arriving at a new method for mitigating the water vapor masking effect.
Ting-Chi Wu, Milija Zupanski, Stephen Saleeby, Anton Kliewer, Lewis Grasso, Qijing Bian, Samuel A. Atwood, Yi Wang, and Jun Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1249, https://doi.org/10.5194/acp-2018-1249, 2018
Revised manuscript not accepted
K. Apodaca, M. Zupanski, M. DeMaria, J. A. Knaff, and L. D. Grasso
Nonlin. Processes Geophys., 21, 1027–1041, https://doi.org/10.5194/npg-21-1027-2014, https://doi.org/10.5194/npg-21-1027-2014, 2014
Jianglong Zhang, Jeffrey S. Reid, Blake Sorenson, Steven D. Miller, Miguel O. Román, Zhuosen Wang, Robert J. D. Spurr, Shawn Jaker, Thomas F. Eck, and Juli I. Rubin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-181, https://doi.org/10.5194/amt-2024-181, 2024
Preprint under review for AMT
Short summary
Short summary
Using observations from the Visible Infrared Imaging Radiometer Suite Day-Night Band, we developed a method for constructing gridded nighttime aerosol optical thickness (AOT) data based on the spatial derivative of measured top-of-atmosphere attenuated upwelling artificial lights at night. The gridded nighttime AOT retrievals, compared against Aerosol Robotic Network data, show reasonable skill levels for potential data assimilation, air quality and climate studies of significant events.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Jianglong Zhang, Jeffrey S. Reid, Steven D. Miller, Miguel Román, Zhuosen Wang, Robert J. D. Spurr, and Shawn Jaker
Atmos. Meas. Tech., 16, 2531–2546, https://doi.org/10.5194/amt-16-2531-2023, https://doi.org/10.5194/amt-16-2531-2023, 2023
Short summary
Short summary
We adapted the spherical harmonics discrete ordinate method 3-dimentional radiative transfer model (3-D RTM) and developed a nighttime 3-D RTM capability for simulating top-of-atmosphere radiances from artificial light sources for aerosol retrievals. Our study suggests that both aerosol optical depth and aerosol plume height can be effectively retrieved using nighttime observations over artificial light sources, through the newly developed radiative transfer modeling capability.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023, https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Short summary
This paper provides insights into the effects of clouds on Orbiting Carbon Observatory (OCO-2) measurements of CO2. Calculations are carried out that indicate the extent to which this satellite experiment underestimates CO2, due to these cloud effects, as a function of the distance between the surface observation footprint and the nearest cloud. The paper discusses how to lessen the influence of these cloud effects.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Christopher O'Dell, K. Sebastian Schmidt, Hong Chen, and David Baker
Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, https://doi.org/10.5194/amt-14-1475-2021, 2021
Short summary
Short summary
The OCO-2 science team is working to retrieve CO2 measurements that can be used by the carbon cycle community to calculate regional sources and sinks of CO2. The retrieved data, however, are in need of improvements in accuracy. This paper discusses several ways in which 3D cloud metrics (such as the distance of a measurement to the nearest cloud) can be used to account for cloud effects in the OCO-2 CO2 data files.
Steven Albers, Stephen M. Saleeby, Sonia Kreidenweis, Qijing Bian, Peng Xian, Zoltan Toth, Ravan Ahmadov, Eric James, and Steven D. Miller
Atmos. Meas. Tech., 13, 3235–3261, https://doi.org/10.5194/amt-13-3235-2020, https://doi.org/10.5194/amt-13-3235-2020, 2020
Short summary
Short summary
A fast 3D visible-light forward operator is used to realistically visualize, validate, and potentially assimilate ground- and space-based camera and satellite imagery with NWP models. Three-dimensional fields of hydrometeors, aerosols, and 2D land surface variables are considered in the generation of radiance fields and RGB imagery from a variety of vantage points.
Jason M. Apke, Kyle A. Hilburn, Steven D. Miller, and David A. Peterson
Atmos. Meas. Tech., 13, 1593–1608, https://doi.org/10.5194/amt-13-1593-2020, https://doi.org/10.5194/amt-13-1593-2020, 2020
Short summary
Short summary
Objective identification of deep convection outflow boundaries (OFBs) in next-generation geostationary satellite imagery is explored here using motion derived from a tuned advanced optical flow algorithm. Motion discontinuity preservation within the derivation is found crucial for successful OFB tracking between images, which yields new meteorological data for objective systems to use. These results provide the first step towards a fully automated satellite-based OFB identification algorithm.
Jeremy E. Solbrig, Steven D. Miller, Jianglong Zhang, Lewis Grasso, and Anton Kliewer
Atmos. Meas. Tech., 13, 165–190, https://doi.org/10.5194/amt-13-165-2020, https://doi.org/10.5194/amt-13-165-2020, 2020
Short summary
Short summary
New satellite sensors are able to view visible light, such as that emitted by cities, at night. It may be possible to use the light from cities to assess the amount of particulate matter in the atmosphere and the thickness of clouds. To do this we must understand how light emitted from the Earth's surface changes with time and viewing conditions. This study takes a step towards understanding the characteristics of light emitted by cities and its stability in time.
Steven D. Miller, Louie D. Grasso, Qijing Bian, Sonia M. Kreidenweis, Jack F. Dostalek, Jeremy E. Solbrig, Jennifer Bukowski, Susan C. van den Heever, Yi Wang, Xiaoguang Xu, Jun Wang, Annette L. Walker, Ting-Chi Wu, Milija Zupanski, Christine Chiu, and Jeffrey S. Reid
Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019, https://doi.org/10.5194/amt-12-5101-2019, 2019
Short summary
Short summary
Satellite–based detection of lofted mineral via infrared–window channels, well established in the literature, faces significant challenges in the presence of atmospheric moisture. Here, we consider a case featuring the juxtaposition of two dust plumes embedded within dry and moist air masses. The case is considered from the vantage points of numerical modeling, multi–sensor observations, and radiative transfer theory arriving at a new method for mitigating the water vapor masking effect.
Stephen M. Saleeby, Susan C. van den Heever, Jennie Bukowski, Annette L. Walker, Jeremy E. Solbrig, Samuel A. Atwood, Qijing Bian, Sonia M. Kreidenweis, Yi Wang, Jun Wang, and Steven D. Miller
Atmos. Chem. Phys., 19, 10279–10301, https://doi.org/10.5194/acp-19-10279-2019, https://doi.org/10.5194/acp-19-10279-2019, 2019
Short summary
Short summary
This study seeks to understand how intense dust storms impact the heating and cooling of the land surface and atmosphere. Dust storms that are intense enough to substantially impact visibility can also alter how much sunlight reaches the surface during the day and how much heat is trapped in the atmosphere at night. These radiation changes can impact the temperature of the atmosphere and impact the weather in the vicinity.
Xiaoguang Xu, Jun Wang, Yi Wang, Jing Zeng, Omar Torres, Jeffrey S. Reid, Steven D. Miller, J. Vanderlei Martins, and Lorraine A. Remer
Atmos. Meas. Tech., 12, 3269–3288, https://doi.org/10.5194/amt-12-3269-2019, https://doi.org/10.5194/amt-12-3269-2019, 2019
Short summary
Short summary
Detecting aerosol layer height from space is challenging. The traditional method relies on active sensors such as lidar that provide the detailed vertical structure of the aerosol profile but is costly with limited spatial coverage (more than 1 year is needed for global coverage). Here we developed a passive remote sensing technique that uses backscattered sunlight to retrieve smoke aerosol layer height over both water and vegetated surfaces from a sensor 1.5 million kilometers from the Earth.
Jianglong Zhang, Shawn L. Jaker, Jeffrey S. Reid, Steven D. Miller, Jeremy Solbrig, and Travis D. Toth
Atmos. Meas. Tech., 12, 3209–3222, https://doi.org/10.5194/amt-12-3209-2019, https://doi.org/10.5194/amt-12-3209-2019, 2019
Short summary
Short summary
Using nighttime observations from the Visible Infrared Imager Radiometer Suite (VIIRS) Day/Night band (DNB), the characteristics of artificial light sources are evaluated as functions of observation conditions, and incremental improvements are documented on nighttime aerosol retrievals on a regional scale. Results from the study indicate the potential of this method to begin filling critical gaps in diurnal aerosol optical thickness information at both regional and global scales.
Mark Richardson, Jussi Leinonen, Heather Q. Cronk, James McDuffie, Matthew D. Lebsock, and Graeme L. Stephens
Atmos. Meas. Tech., 12, 1717–1737, https://doi.org/10.5194/amt-12-1717-2019, https://doi.org/10.5194/amt-12-1717-2019, 2019
Short summary
Short summary
We retrieve cloud properties, including geometric thickness, by combining hyperspectral Orbiting Carbon Observatory-2 (OCO-2) A-band measurements with CALIPSO lidar. This uses cloudy scene data that are not used in OCO-2's main mission, which is aimed at clear-sky atmospheric CO2 abundance. This is the first retrieval using such hyperspectral information and promises to provide a unique constraint on the properties of low liquid clouds over the ocean.
Milija Zupanski, Anton Kliewer, Ting-Chi Wu, Karina Apodaca, Qijing Bian, Sam Atwood, Yi Wang, Jun Wang, and Steven D. Miller
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-2, https://doi.org/10.5194/acp-2019-2, 2019
Revised manuscript not accepted
Short summary
Short summary
The problem of under-observed aerosol observations and in particular the vertical distribution of aerosols is addressed using a strongly coupled atmosphere-aerosol data assimilation system. In the strongly coupled system the atmospheric observations, which are more numerous in general, can impact the aerosol initial conditions. In an application over a coastal zone, results indicate that atmospheric observations have a positive impact on aerosols.
Ting-Chi Wu, Milija Zupanski, Stephen Saleeby, Anton Kliewer, Lewis Grasso, Qijing Bian, Samuel A. Atwood, Yi Wang, and Jun Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1249, https://doi.org/10.5194/acp-2018-1249, 2018
Revised manuscript not accepted
Marc Schröder, Maarit Lockhoff, Frank Fell, John Forsythe, Tim Trent, Ralf Bennartz, Eva Borbas, Michael G. Bosilovich, Elisa Castelli, Hans Hersbach, Misako Kachi, Shinya Kobayashi, E. Robert Kursinski, Diego Loyola, Carl Mears, Rene Preusker, William B. Rossow, and Suranjana Saha
Earth Syst. Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018, https://doi.org/10.5194/essd-10-1093-2018, 2018
Short summary
Short summary
This publication presents results achieved within the GEWEX Water Vapor Assessment (G-VAP). An overview of available water vapour data records based on satellite observations and reanalysis is given. If a minimum temporal coverage of 10 years is applied, 22 data records remain. These form the G-VAP data archive, which contains total column water vapour, specific humidity profiles and temperature profiles. The G-VAP data archive is designed to ease intercomparison and climate model evaluation.
Thomas E. Taylor, Christopher W. O'Dell, Christian Frankenberg, Philip T. Partain, Heather Q. Cronk, Andrey Savtchenko, Robert R. Nelson, Emily J. Rosenthal, Albert Y. Chang, Brenden Fisher, Gregory B. Osterman, Randy H. Pollock, David Crisp, Annmarie Eldering, and Michael R. Gunson
Atmos. Meas. Tech., 9, 973–989, https://doi.org/10.5194/amt-9-973-2016, https://doi.org/10.5194/amt-9-973-2016, 2016
Short summary
Short summary
NASA's Orbiting Carbon Observatory-2 (OCO-2) is providing approximately 1 million soundings per day of the total column of carbon dioxide (XCO2). The retrieval of XCO2 can only be performed for soundings sufficiently free of cloud and aerosol. This work highlights comparisons of OCO-2 cloud screening algorithms to the MODIS cloud mask product. We find agreement approximately 85 % of the time with some significant spatial and small seasonal dependencies.
T. M. McHardy, J. Zhang, J. S. Reid, S. D. Miller, E. J. Hyer, and R. E. Kuehn
Atmos. Meas. Tech., 8, 4773–4783, https://doi.org/10.5194/amt-8-4773-2015, https://doi.org/10.5194/amt-8-4773-2015, 2015
Short summary
Short summary
Using Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data, a new method is developed for retrieving nighttime aerosol optical thickness values through the examination of the dispersion of radiance values above an artificial light source. Preliminary results suggest that artificial light sources can be used for estimating regional and global nighttime aerosol distributions in the future.
A. J. Kliewer, S. J. Fletcher, A. S. Jones, and J. M. Forsythe
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npgd-2-1363-2015, https://doi.org/10.5194/npgd-2-1363-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Data assimilation systems and retrieval systems that are based upon a maximum likelihood estimation, many of which are in operational use, rely on the assumption that all of the errors and variables involved follow a normal distribution. This work develops a series of statistical tests to show that mixing ratio, temperature, wind and surface pressure follow non-normal, or in fact, lognormal distributions thus impacting the design-basis of many operational data assimilation and retrieval systems
K. Apodaca, M. Zupanski, M. DeMaria, J. A. Knaff, and L. D. Grasso
Nonlin. Processes Geophys., 21, 1027–1041, https://doi.org/10.5194/npg-21-1027-2014, https://doi.org/10.5194/npg-21-1027-2014, 2014
R. S. Johnson, J. Zhang, E. J. Hyer, S. D. Miller, and J. S. Reid
Atmos. Meas. Tech., 6, 1245–1255, https://doi.org/10.5194/amt-6-1245-2013, https://doi.org/10.5194/amt-6-1245-2013, 2013
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Instruments and Platforms
The EarthCARE lidar cloud and aerosol profile processor (A-PRO): the A-AER, A-EBD, A-TC, and A-ICE products
Shortwave Array Spectroradiometer-Hemispheric (SAS-He): design and evaluation
HARP2 Pre-Launch Calibration Overview: The Effects of a Wide Field of View
Enhancing mobile aerosol monitoring with CE376 dual-wavelength depolarization lidar
Assessment of the spectral misalignment effect (SMILE) on EarthCARE's Multi-Spectral Imager aerosol and cloud property retrievals
The Langley ratio method, a new approach for transferring photometer calibration from direct sun measurements
Multi-star calibration in starphotometry
Continuous observations from horizontally pointing lidar, weather parameters and PM2.5: a pre-deployment assessment for monitoring radioactive dust in Fukushima, Japan
Multiwavelength fluorescence lidar observations of smoke plumes
Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic
Earth observations from the Moon's surface: dependence on lunar libration
Relationship between the sub-micron fraction (SMF) and fine-mode fraction (FMF) in the context of AERONET retrievals
Systematic analysis of virga and its impact on surface particulate matter observations
Spectrometric fluorescence and Raman lidar: absolute calibration of aerosol fluorescence spectra and fluorescence correction of humidity measurements
The polarimetric characteristics of dust with irregular shapes: evaluation of the spheroid model for single particles
The eVe reference polarisation lidar system for the calibration and validation of the Aeolus L2A product
Evaluation of aerosol microphysical, optical and radiative properties measured with a multiwavelength photometer
Polarization lidar for detecting dust orientation: system design and calibration
Accuracy in starphotometry
Rethinking the correction for absorbing aerosols in the OMI- and TROPOMI-like surface UV algorithms
Mie–Raman–fluorescence lidar observations of aerosols during pollen season in the north of France
Combined use of Mie–Raman and fluorescence lidar observations for improving aerosol characterization: feasibility experiment
Solar radiometer sensing of multi-year aerosol features over a tropical urban station: direct-Sun and inversion products
An overview of and issues with sky radiometer technology and SKYNET
Scanning polarization lidar LOSA-M3: opportunity for research of crystalline particle orientation in the ice clouds
The polarized Sun and sky radiometer SSARA: design, calibration, and application for ground-based aerosol remote sensing
Nocturnal aerosol optical depth measurements with modified sky radiometer POM-02 using the moon as a light source
Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar
Monitoring aerosols over Europe: an assessment of the potential benefit of assimilating the VIS04 measurements from the future MTG/FCI geostationary imager
The impact of MISR-derived injection height initialization on wildfire and volcanic plume dispersion in the HYSPLIT model
The instrument constant of sky radiometers (POM-02) – Part 1: Calibration constant
The instrument constant of sky radiometers (POM-02) – Part 2: Solid view angle
Description and applications of a mobile system performing on-road aerosol remote sensing and in situ measurements
Remote sensing of aerosols with small satellites in formation flight
A study of the approaches used to retrieve aerosol extinction, as applied to limb observations made by OSIRIS and SCIAMACHY
Increased aerosol content in the atmosphere over Ukraine during summer 2010
Experimental techniques for the calibration of lidar depolarization channels in EARLINET
Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations
Using paraxial approximation to describe the optical setup of a typical EARLINET lidar system
Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes
Aerosol optical depth determination in the UV using a four-channel precision filter radiometer
A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring
Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment
1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling: cirrus case study
About the effects of polarising optics on lidar signals and the Δ90 calibration
Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers
An empirical method to correct for temperature-dependent variations in the overlap function of CHM15k ceilometers
Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites
The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation
Profiling the PM2.5 mass concentration vertical distribution in the boundary layer
David Patrick Donovan, Gerd-Jan van Zadelhoff, and Ping Wang
Atmos. Meas. Tech., 17, 5301–5340, https://doi.org/10.5194/amt-17-5301-2024, https://doi.org/10.5194/amt-17-5301-2024, 2024
Short summary
Short summary
ATLID (atmospheric lidar) is the lidar to be flown on the Earth Clouds and Radiation Explorer satellite (EarthCARE). EarthCARE is a joint European–Japanese satellite mission that was launched in May 2024. ATLID is an advanced lidar optimized for cloud and aerosol property profile measurements. This paper describes some of the key novel algorithms being applied to this lidar to retrieve cloud and aerosol properties. Example results based on simulated data are presented and discussed.
Evgueni Kassianov, Connor J. Flynn, James C. Barnard, Brian D. Ermold, and Jennifer M. Comstock
Atmos. Meas. Tech., 17, 4997–5013, https://doi.org/10.5194/amt-17-4997-2024, https://doi.org/10.5194/amt-17-4997-2024, 2024
Short summary
Short summary
Conventional ground-based radiometers commonly measure solar radiation at a few wavelengths within a narrow spectral range. These limitations prevent improved retrievals of aerosol, cloud, and surface characteristics. To address these limitations, an advanced ground-based radiometer with expanded spectral coverage and hyperspectral capability is introduced. Its good performance is demonstrated using reference data collected over three coastal regions with diverse types of aerosols and clouds.
Noah Sienkiewicz, J. Vanderlei Martins, Brent A. McBride, Xiaoguang Xu, Anin Puthukkudy, Rachel Smith, and Roberto Fernandez-Borda
EGUsphere, https://doi.org/10.5194/egusphere-2024-2024, https://doi.org/10.5194/egusphere-2024-2024, 2024
Short summary
Short summary
HARP2 is a satellite remote sensing camera which launched on the NASA PACE mission in early 2024. HARP2 uses image data of the Earth to allow scientists to measure natural processes. There exists interest in accurate polarimeter measurements of clouds and aerosols to understand climate change. In 2022, HARP2 underwear lab calibration evaluating its wide field-of-view characteristics. In doing so it was shown that key HARP2 calibration parameters possessed significant field-of-view variability.
Maria Fernanda Sanchez Barrero, Ioana Elisabeta Popovici, Philippe Goloub, Stephane Victori, Qiaoyun Hu, Benjamin Torres, Thierry Podvin, Luc Blarel, Gaël Dubois, Fabrice Ducos, Eric Bourrianne, Aliaksandr Lapionak, Lelia Proniewski, Brent Holben, David Matthew Giles, and Anthony LaRosa
Atmos. Meas. Tech., 17, 3121–3146, https://doi.org/10.5194/amt-17-3121-2024, https://doi.org/10.5194/amt-17-3121-2024, 2024
Short summary
Short summary
This study showcases the use of a compact elastic lidar to monitor aerosols aboard moving platforms. By coupling dual-wavelength and depolarization measurements with photometer data, we studied aerosols during events of Saharan dust and smoke transport. Our research, conducted in various scenarios, not only validated our methods but also offered insights into the atmospheric dynamics near active fires. This study aids future research to fill observational gaps in aerosol monitoring.
Nicole Docter, Anja Hünerbein, David P. Donovan, Rene Preusker, Jürgen Fischer, Jan Fokke Meirink, Piet Stammes, and Michael Eisinger
Atmos. Meas. Tech., 17, 2507–2519, https://doi.org/10.5194/amt-17-2507-2024, https://doi.org/10.5194/amt-17-2507-2024, 2024
Short summary
Short summary
MSI is the imaging spectrometer on board EarthCARE and will provide across-track information on clouds and aerosol properties. The MSI solar channels exhibit a spectral misalignment effect (SMILE) in the measurements. This paper describes and evaluates how the SMILE will affect the cloud and aerosol retrievals that do not account for it.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Liviu Ivănescu and Norman T. O'Neill
Atmos. Meas. Tech., 16, 6111–6121, https://doi.org/10.5194/amt-16-6111-2023, https://doi.org/10.5194/amt-16-6111-2023, 2023
Short summary
Short summary
The starphotometers' complex infrastructure prohibits calibration campaigns. On-site calibration procedures appear as the only practical solution. A multi-star approach overcomes site-specific sky transparency stability problems. Star selection strategies were proposed for mitigating some sources of errors. Data processing strategies and instrument design improvements appear necessary.
Nofel Lagrosas, Kosuke Okubo, Hitoshi Irie, Yutaka Matsumi, Tomoki Nakayama, Yutaka Sugita, Takashi Okada, and Tatsuo Shiina
Atmos. Meas. Tech., 16, 5937–5951, https://doi.org/10.5194/amt-16-5937-2023, https://doi.org/10.5194/amt-16-5937-2023, 2023
Short summary
Short summary
This work examines the near-ground aerosol–weather relationship from 7-month continuous lidar and weather observations in Chiba, Japan. Optical parameters from lidar data are compared with weather parameters to understand and quantify the aerosol–weather relationship and how these optical parameters are affected by the weather and season. The results provide insights into analyzing optical properties of radioactive aerosols when the lidar system is continuously operated in a radioactive area.
Igor Veselovskii, Nikita Kasianik, Mikhail Korenskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, and Dong Liu
Atmos. Meas. Tech., 16, 2055–2065, https://doi.org/10.5194/amt-16-2055-2023, https://doi.org/10.5194/amt-16-2055-2023, 2023
Short summary
Short summary
A five-channel fluorescence lidar was developed for the study of atmospheric aerosol. The fluorescence spectrum induced by 355 nm laser emission is analyzed in five spectral intervals, namely 438 and 29, 472 and 32, 513 and 29, 560 and 40, and 614 and 54 nm. This lidar system was operated during strong forest fires. Our results demonstrate that, for urban aerosol, the maximal fluorescence backscattering is observed at 472 nm, while for smoke, the spectrum is shifted toward longer wavelengths.
Emily D. Lenhardt, Lan Gao, Jens Redemann, Feng Xu, Sharon P. Burton, Brian Cairns, Ian Chang, Richard A. Ferrare, Chris A. Hostetler, Pablo E. Saide, Calvin Howes, Yohei Shinozuka, Snorre Stamnes, Mary Kacarab, Amie Dobracki, Jenny Wong, Steffen Freitag, and Athanasios Nenes
Atmos. Meas. Tech., 16, 2037–2054, https://doi.org/10.5194/amt-16-2037-2023, https://doi.org/10.5194/amt-16-2037-2023, 2023
Short summary
Short summary
Small atmospheric particles, such as smoke from wildfires or pollutants from human activities, impact cloud properties, and clouds have a strong influence on climate. To better understand the distributions of these particles, we develop relationships to derive their concentrations from remote sensing measurements from an instrument called a lidar. Our method is reliable for smoke particles, and similar steps can be taken to develop relationships for other particle types.
Nick Gorkavyi, Nickolay Krotkov, and Alexander Marshak
Atmos. Meas. Tech., 16, 1527–1537, https://doi.org/10.5194/amt-16-1527-2023, https://doi.org/10.5194/amt-16-1527-2023, 2023
Short summary
Short summary
The article discusses topical issues of the visible (libration) motion of the Earth in the sky of the Moon in a rectangle measuring 13.4° × 15.8°. On the one hand, the librations of the Moon make these observations difficult. On the other hand, they can be used as a natural scanning mechanism for cameras and spectroscopes mounted on a fixed platform on the surface of the Moon.
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Thomas F. Eck, Jeffrey S. Reid, David M. Giles, Daniel Pérez-Ramírez, and Jai Prakash Chaubey
Atmos. Meas. Tech., 16, 1103–1120, https://doi.org/10.5194/amt-16-1103-2023, https://doi.org/10.5194/amt-16-1103-2023, 2023
Short summary
Short summary
Aerosols are atmospheric particles that vary in size (radius) from a fraction of a micrometer (µm) to around 20 µm. They tend to be either smaller than 1 µm (like smoke or pollution) or larger than 1 µm (like dust or sea salt). Their optical effect (scattering and absorbing sunlight) can be divided into FM (fine-mode) and CM (coarse-mode) parts using a cutoff radius around 1 µm or a spectral (color) technique. We present and validate a theoretical link between the types of FM and CM divisions.
Nakul N. Karle, Ricardo K. Sakai, Rosa M. Fitzgerald, Charles Ichoku, Fernando Mercado, and William R. Stockwell
Atmos. Meas. Tech., 16, 1073–1085, https://doi.org/10.5194/amt-16-1073-2023, https://doi.org/10.5194/amt-16-1073-2023, 2023
Short summary
Short summary
Extensive virga research is uncommon, even though it is a common phenomenon. A systematic method was developed to characterize virga using available datasets. In total, 50 virga events were observed, appearing only during a specific time of the year, revealing a seasonal pattern. These virga events were identified and classified, and their impact on surface PM measurements was investigated. A more detailed examination of the selected events reveals that virga impacts regional air quality.
Jens Reichardt, Oliver Behrendt, and Felix Lauermann
Atmos. Meas. Tech., 16, 1–13, https://doi.org/10.5194/amt-16-1-2023, https://doi.org/10.5194/amt-16-1-2023, 2023
Short summary
Short summary
The UVA spectrometer is the latest instrumental addition to the spectrometric fluorescence and Raman lidar RAMSES. The redesigned receiver and the data analysis of the fluorescence measurement are described. Furthermore, the effect of aerosol fluorescence on humidity measurements is studied. It turns out that Raman lidars equipped with a spectrometer show superior performance over those with one discrete fluorescence detection channel only. The cause is variability in the fluorescence spectrum.
Jie Luo, Zhengqiang Li, Cheng Fan, Hua Xu, Ying Zhang, Weizhen Hou, Lili Qie, Haoran Gu, Mengyao Zhu, Yinna Li, and Kaitao Li
Atmos. Meas. Tech., 15, 2767–2789, https://doi.org/10.5194/amt-15-2767-2022, https://doi.org/10.5194/amt-15-2767-2022, 2022
Short summary
Short summary
A single model is difficult to represent various shapes of dust. We proposed a tunable model to represent dust with various shapes. Two tunable parameters were used to represent the effects of the erosion degree and binding forces from the mass center. Thus, the model can represent various dust shapes by adjusting the tunable parameters. Besides, the applicability of the spheroid model in calculating the optical properties and polarimetric characteristics is evaluated.
Peristera Paschou, Nikolaos Siomos, Alexandra Tsekeri, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Ioannis Binietoglou, George Tsaknakis, Alexandros Tavernarakis, Christos Evangelatos, Jonas von Bismarck, Thomas Kanitz, Charikleia Meleti, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 15, 2299–2323, https://doi.org/10.5194/amt-15-2299-2022, https://doi.org/10.5194/amt-15-2299-2022, 2022
Short summary
Short summary
The eVe lidar delivers quality-assured aerosol and cloud optical properties according to the standards of ACTRIS. It is a mobile reference system for the validation of the ESA's Aeolus satellite mission (L2 aerosol and cloud products). eVe provides linear and circular polarisation measurements with Raman capabilities. Here, we describe the system design, the polarisation calibration techniques, and the software for the retrieval of the optical products.
Yu Zheng, Huizheng Che, Yupeng Wang, Xiangao Xia, Xiuqing Hu, Xiaochun Zhang, Jun Zhu, Jibiao Zhu, Hujia Zhao, Lei Li, Ke Gui, and Xiaoye Zhang
Atmos. Meas. Tech., 15, 2139–2158, https://doi.org/10.5194/amt-15-2139-2022, https://doi.org/10.5194/amt-15-2139-2022, 2022
Short summary
Short summary
Ground-based observations of aerosols and aerosol data verification is important for satellite and climate model modification. Here we present an evaluation of aerosol microphysical, optical and radiative properties measured using a multiwavelength photometer with a highly integrated design and smart control performance. The validation of this product is discussed in detail using AERONET as a reference. This work contributes to reducing AOD uncertainties in China and combating climate change.
Alexandra Tsekeri, Vassilis Amiridis, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Spiros Metallinos, George Doxastakis, Josef Gasteiger, Nikolaos Siomos, Peristera Paschou, Thanasis Georgiou, George Tsaknakis, Christos Evangelatos, and Ioannis Binietoglou
Atmos. Meas. Tech., 14, 7453–7474, https://doi.org/10.5194/amt-14-7453-2021, https://doi.org/10.5194/amt-14-7453-2021, 2021
Short summary
Short summary
Dust orientation in the Earth's atmosphere has been an ongoing investigation in recent years, and its potential proof will be a paradigm shift for dust remote sensing. We have designed and developed a polarization lidar that provides direct measurements of dust orientation, as well as more detailed information of the particle microphysics. We provide a description of its design as well as its first measurements.
Liviu Ivănescu, Konstantin Baibakov, Norman T. O'Neill, Jean-Pierre Blanchet, and Karl-Heinz Schulz
Atmos. Meas. Tech., 14, 6561–6599, https://doi.org/10.5194/amt-14-6561-2021, https://doi.org/10.5194/amt-14-6561-2021, 2021
Short summary
Short summary
Starphotometry seeks to provide accurate measures of nocturnal optical depth (OD). It is driven by a need to characterize aerosols and their radiative forcing effects during a very data-sparse period. A sub-0.01 OD error is required to adequately characterize key aerosol parameters. We found approaches for sufficiently mitigating errors to achieve the 0.01 standard. This renders starphotometry the equal of daytime techniques and opens the door to exploiting its distinct star-pointing advantages.
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021, https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Short summary
Methods to estimate surface UV radiation from satellite measurements offer the only means to obtain global coverage, and the development of satellite-based UV algorithms has been ongoing since the early 1990s. One of the main challenges in this development has been how to account for the overall effect of absorption by atmospheric aerosols. One such method was suggested roughly a decade ago, and in this study we propose further improvements for this kind of approach.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Marie Choël, Nicolas Visez, and Mikhail Korenskiy
Atmos. Meas. Tech., 14, 4773–4786, https://doi.org/10.5194/amt-14-4773-2021, https://doi.org/10.5194/amt-14-4773-2021, 2021
Short summary
Short summary
The multiwavelength Mie–Raman–fluorescence lidar of the University of Lille was used to characterize aerosols during the pollen season in the north of France for the period March–June 2020. The results of observations demonstrate that the presence of pollen grains in aerosol mixtures leads to an increase in the depolarization ratio and to the enhancement of the fluorescence backscattering.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskiy, Olivier Pujol, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 13, 6691–6701, https://doi.org/10.5194/amt-13-6691-2020, https://doi.org/10.5194/amt-13-6691-2020, 2020
Short summary
Short summary
To study the feasibility of a fluorescence lidar for aerosol characterization, the fluorescence channel is added to the multiwavelength Mie-Raman lidar of Lille University. A part of the fluorescence spectrum is selected by the interference filter of 44 nm bandwidth centered at 466 nm. Such an approach has demonstrated high sensitivity, allowing fluorescence signals from weak aerosol layers to be detected. The technique can also be used for monitoring the aerosol inside the cloud layers.
Katta Vijayakumar, Panuganti C. S. Devara, Sunil M. Sonbawne, David M. Giles, Brent N. Holben, Sarangam Vijaya Bhaskara Rao, and Chalicheemalapalli K. Jayasankar
Atmos. Meas. Tech., 13, 5569–5593, https://doi.org/10.5194/amt-13-5569-2020, https://doi.org/10.5194/amt-13-5569-2020, 2020
Short summary
Short summary
The direct-Sun and inversion products of urban atmospheric aerosols, obtained from a Cimel Sun–sky radiometer in Pune, India, under the AERONET program since October 2004, have been reported in this paper. The mean seasonal variations in AOD from cloud-free days indicated greater values during the monsoon season, revealing dominance of hygroscopic aerosols over the station. Such results are sparse in India and are important for estimating aerosol radiative forcing and validating climate models.
Teruyuki Nakajima, Monica Campanelli, Huizheng Che, Victor Estellés, Hitoshi Irie, Sang-Woo Kim, Jhoon Kim, Dong Liu, Tomoaki Nishizawa, Govindan Pandithurai, Vijay Kumar Soni, Boossarasiri Thana, Nas-Urt Tugjsurn, Kazuma Aoki, Sujung Go, Makiko Hashimoto, Akiko Higurashi, Stelios Kazadzis, Pradeep Khatri, Natalia Kouremeti, Rei Kudo, Franco Marenco, Masahiro Momoi, Shantikumar S. Ningombam, Claire L. Ryder, Akihiro Uchiyama, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 4195–4218, https://doi.org/10.5194/amt-13-4195-2020, https://doi.org/10.5194/amt-13-4195-2020, 2020
Short summary
Short summary
This paper overviews the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. The paper also discusses current issues of SKYNET to provide better information for the community.
Grigorii P. Kokhanenko, Yurii S. Balin, Marina G. Klemasheva, Sergei V. Nasonov, Mikhail M. Novoselov, Iogannes E. Penner, and Svetlana V. Samoilova
Atmos. Meas. Tech., 13, 1113–1127, https://doi.org/10.5194/amt-13-1113-2020, https://doi.org/10.5194/amt-13-1113-2020, 2020
Short summary
Short summary
Cirrus clouds consist of crystals (plates, needles) that can orient themselves in space as a result of free fall. This leads to the appearance of various types of optical halo and to specular reflection of solar radiation. The presence of such particles significantly affects the passage of thermal radiation through the mid- and high-level ice clouds. Using the properties of polarization, a scanning lidar makes it possible to identify cloud areas with oriented crystals.
Hans Grob, Claudia Emde, Matthias Wiegner, Meinhard Seefeldner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 13, 239–258, https://doi.org/10.5194/amt-13-239-2020, https://doi.org/10.5194/amt-13-239-2020, 2020
Short summary
Short summary
Polarimetry has been established as an enhancement to classical photometry in aerosol remote sensing over the past years. We propose a fast and exact radiometric and polarimetric calibration method for polarized photometers. Additionally, a technique for correcting an alt-azimuthal mount is introduced.
These methods are applied to measurements obtained with our SSARA instrument during the A-LIFE field campaign. For 2 d, the data are subjected to an inversion of aerosol optical properties.
Akihiro Uchiyama, Masataka Shiobara, Hiroshi Kobayashi, Tsuneo Matsunaga, Akihiro Yamazaki, Kazunori Inei, Kazuhiro Kawai, and Yoshiaki Watanabe
Atmos. Meas. Tech., 12, 6465–6488, https://doi.org/10.5194/amt-12-6465-2019, https://doi.org/10.5194/amt-12-6465-2019, 2019
Short summary
Short summary
The majority of aerosol data are obtained from daytime measurements using the Sun as a light source, and there are few datasets available for studying nighttime aerosol characteristics. To estimate the aerosol optical depth (AOD) during the nighttime using the moon as a light source, a radiometer for the daytime was modified, and a new calibration method was developed. As a result, the estimations of the nighttime AOD were made with the same degree of precision and accuracy during the daytime.
Chong Wang, Mingjiao Jia, Haiyun Xia, Yunbin Wu, Tianwen Wei, Xiang Shang, Chengyun Yang, Xianghui Xue, and Xiankang Dou
Atmos. Meas. Tech., 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019, https://doi.org/10.5194/amt-12-3303-2019, 2019
Short summary
Short summary
To investigate the relationship between BLH and air pollution under different conditions, a compact micro-pulse lidar integrating both direct-detection lidar and coherent Doppler wind lidar is built. Evolution of atmospheric boundary layer height (BLH), aerosol layer and fine structure in cloud base are well retrieved. Negative correlation exists between BLH and PM2.5. Different trends show that the relationship between PM2.5 and BLH should be considered in different boundary layer categories.
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019, https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
Short summary
The future Flexible Combined Imager (FCI) on board MeteoSat Third Generation is expected to improve the detection and the quantification of aerosols. The study assesses the potential of FCI/VIS04 channel for monitoring air pollution in Europe. An observing system simulation experiment in MOCAGE is developed, and they show a large positive impact of the assimilation over a 4-month period and particularly during a severe pollution episode. The added value of geostationary data is also assessed.
Charles J. Vernon, Ryan Bolt, Timothy Canty, and Ralph A. Kahn
Atmos. Meas. Tech., 11, 6289–6307, https://doi.org/10.5194/amt-11-6289-2018, https://doi.org/10.5194/amt-11-6289-2018, 2018
Short summary
Short summary
The height that aerosols are injected into the atmosphere can significantly impact the dispersion of aerosol plumes. We use direct observations from the MISR instrument to determine aerosol injection height and constrain the HYSPLIT Dispersion model with these data. We have shown that the nominal plume-rise calculation within HYSPLIT tends to underestimate injection heights of wildfires and that simulations constrained with MISR injection height can show better agreement with MODIS observations.
Akihiro Uchiyama, Tsuneo Matsunaga, and Akihiro Yamazaki
Atmos. Meas. Tech., 11, 5363–5388, https://doi.org/10.5194/amt-11-5363-2018, https://doi.org/10.5194/amt-11-5363-2018, 2018
Short summary
Short summary
Atmospheric aerosols are an important constituent of the atmosphere. Measurement networks using radiometers such as SKYNET have been developed. There are two constants that we must determine to make accurate measurements. One of them is the calibration constant. The accuracy of the current method to determine this was investigated and the new method for water vapor and near-infrared channels was developed. Utilizing the results of this paper, SKYNET measurement data will become more reliable.
Akihiro Uchiyama, Tsuneo Matsunaga, and Akihiro Yamazaki
Atmos. Meas. Tech., 11, 5389–5402, https://doi.org/10.5194/amt-11-5389-2018, https://doi.org/10.5194/amt-11-5389-2018, 2018
Short summary
Short summary
Atmospheric aerosols are an important constituent of the atmosphere. Measurement networks using radiometers such as SKYNET have been developed. There are two constants that we must determine. One of them is the solid view angle (SVA) of the radiometer. The problems related to SVA were investigated. It was shown that the conventional method can cause a systematic underestimation, and an improved method was proposed. Utilizing the results of this paper, SKYNET data will become more reliable.
Ioana Elisabeta Popovici, Philippe Goloub, Thierry Podvin, Luc Blarel, Rodrigue Loisil, Florin Unga, Augustin Mortier, Christine Deroo, Stéphane Victori, Fabrice Ducos, Benjamin Torres, Cyril Delegove, Marie Choël, Nathalie Pujol-Söhne, and Christophe Pietras
Atmos. Meas. Tech., 11, 4671–4691, https://doi.org/10.5194/amt-11-4671-2018, https://doi.org/10.5194/amt-11-4671-2018, 2018
Short summary
Short summary
This paper aims to show the potential of an instrumented mobile platform, performing on-road remote sensing and in situ measurements, to derive aerosol properties. It is distinguished from other transportable platforms through its ability to perform measurements during movement. Its reduced size, versatility and great flexibility makes it suitable for following sudden aerosol events and for validating satellite measurements and model simulations.
Kirk Knobelspiesse and Sreeja Nag
Atmos. Meas. Tech., 11, 3935–3954, https://doi.org/10.5194/amt-11-3935-2018, https://doi.org/10.5194/amt-11-3935-2018, 2018
Short summary
Short summary
We test if small satellites flying in formation can be used for multi-angle aerosol remote sensing. So far, this has only been done with multiple views on one satellite. Single-view angle satellites flying in formation are a technically feasible alternative, although with different geometries. Using Bayesian information content analysis, we find such satellites equally capable. For aerosol remote sensing, the number of viewing angles is the most important.
Landon A. Rieger, Elizaveta P. Malinina, Alexei V. Rozanov, John P. Burrows, Adam E. Bourassa, and Doug A. Degenstein
Atmos. Meas. Tech., 11, 3433–3445, https://doi.org/10.5194/amt-11-3433-2018, https://doi.org/10.5194/amt-11-3433-2018, 2018
Short summary
Short summary
This paper compares aerosol extinction records from two limb scattering instruments, OSIRIS and SCIAMACHY, to that from the occultation instrument SAGE II. Differences are investigated through modelling and retrieval studies and important sources of systematic errors are quantified. It is found that the largest biases come from uncertainties in the aerosol size distribution and the aerosol particle concentration at altitudes above 30 km.
Evgenia Galytska, Vassyl Danylevsky, René Hommel, and John P. Burrows
Atmos. Meas. Tech., 11, 2101–2118, https://doi.org/10.5194/amt-11-2101-2018, https://doi.org/10.5194/amt-11-2101-2018, 2018
Short summary
Short summary
This research assesses the influence of biomass burning during forest fires throughout summer 2010 on aerosol load over Ukraine, the European territory of Russia (ETR) and Eastern Europe. We apply and compare ground-based and satellite measurements to determine aerosol content, dynamics, and properties. With the application of modeling techniques (HYSPLIT), we show that the maximum AOD in August 2010 over Ukraine was caused by particle transport from the forest fires in the ETR.
Livio Belegante, Juan Antonio Bravo-Aranda, Volker Freudenthaler, Doina Nicolae, Anca Nemuc, Dragos Ene, Lucas Alados-Arboledas, Aldo Amodeo, Gelsomina Pappalardo, Giuseppe D'Amico, Francesco Amato, Ronny Engelmann, Holger Baars, Ulla Wandinger, Alexandros Papayannis, Panos Kokkalis, and Sérgio N. Pereira
Atmos. Meas. Tech., 11, 1119–1141, https://doi.org/10.5194/amt-11-1119-2018, https://doi.org/10.5194/amt-11-1119-2018, 2018
Short summary
Short summary
This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected EARLINET lidar instruments. The calibrated volume and particle depolarization profiles at 532 nm show values that fall within a range that is accepted in the literature. The depolarization accuracy estimate at 532 nm is better than ±0.03 for all cases.
Igor V. Geogdzhayev and Alexander Marshak
Atmos. Meas. Tech., 11, 359–368, https://doi.org/10.5194/amt-11-359-2018, https://doi.org/10.5194/amt-11-359-2018, 2018
Short summary
Short summary
The unique Earth view of the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) orbiting at the point of equal attraction from the Earth and the Sun can significantly augment the low-orbit remote sensing of aerosols, clouds and gases. We derive the relationship between the digital counts and the reflected sunlight intensity for some EPIC channels using collocated Earth views from EPIC and Moderate Resolution Imaging Spectroradiometer (MODIS) and EPIC moon views.
Panagiotis Kokkalis
Atmos. Meas. Tech., 10, 3103–3115, https://doi.org/10.5194/amt-10-3103-2017, https://doi.org/10.5194/amt-10-3103-2017, 2017
Short summary
Short summary
The mathematical formulation for the optical setup of a typical EARLINET lidar system is given here. The equations describing a lidar system from the emitted laser beam to the projection of the telescope aperture on the final receiving unit (i.e., photomultiplier or photodiode) are presented, based on paraxial approximation and a geometric optics approach. The evaluation of the formulation is performed with ray-tracing simulations on a real system.
Andrew M. Sayer, N. Christina Hsu, Corey Bettenhausen, Robert E. Holz, Jaehwa Lee, Greg Quinn, and Paolo Veglio
Atmos. Meas. Tech., 10, 1425–1444, https://doi.org/10.5194/amt-10-1425-2017, https://doi.org/10.5194/amt-10-1425-2017, 2017
Short summary
Short summary
The satellite instrument VIIRS is being used to carry on observations of the Earth made by older satellites like MODIS. Data sets created from these satellite observations depend on the quality of the satellite instruments' calibration. This paper describes a comparison between the calibration of these two sensors. MODIS is believed to be more reliable and so VIIRS is corrected to bring it in line with MODIS. These corrections are shown to improve the quality of VIIRS aerosol data.
Thomas Carlund, Natalia Kouremeti, Stelios Kazadzis, and Julian Gröbner
Atmos. Meas. Tech., 10, 905–923, https://doi.org/10.5194/amt-10-905-2017, https://doi.org/10.5194/amt-10-905-2017, 2017
Short summary
Short summary
Aerosols play an important role in atmospheric processes. Aerosol optical depth is the most common measure of columnar aerosol load. We present a sunphotometer called UVPFR that is able to measure aerosol optical depth in the ultraviolet range, including the calibration, characterization and validation of the instrument/measurements. The instrument will serve as a reference on the intercalibration of Brewer spectrophotometers that are also able to measure aerosol optical depth in the UV region.
A. Fernando Almansa, Emilio Cuevas, Benjamín Torres, África Barreto, Rosa D. García, Victoria E. Cachorro, Ángel M. de Frutos, César López, and Ramón Ramos
Atmos. Meas. Tech., 10, 565–579, https://doi.org/10.5194/amt-10-565-2017, https://doi.org/10.5194/amt-10-565-2017, 2017
Short summary
Short summary
This study presents a new zenith-looking narrow-band radiometer-based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring. The ZEN system comprises a robust and automated radiometer (ZEN-R41), and a lookup table methodology for AOD retrieval (ZEN-LUT). Our results suggest that ZEN is a suitable system to fill the current observational gaps and to complement observations performed by sun-photometer networks in order to improve mineral dust monitoring in remote locations.
Stelios Kazadzis, Panagiotis Raptis, Natalia Kouremeti, Vassilis Amiridis, Antti Arola, Evangelos Gerasopoulos, and Gregory L. Schuster
Atmos. Meas. Tech., 9, 5997–6011, https://doi.org/10.5194/amt-9-5997-2016, https://doi.org/10.5194/amt-9-5997-2016, 2016
Short summary
Short summary
Aerosols play an important role in the Earth's climate. One of the main aerosol properties is the single scattering albedo which is a measure of the aerosol absorption. In this work we have presented a method to retrieve this aerosol property in the ultraviolet and we presented the results for measurements at the urban environment of Athens, Greece. We show that the spectral dependence of the aerosol absorption in the VIS–IR and the UV range depends on the aerosol composition and type.
Moritz Haarig, Ronny Engelmann, Albert Ansmann, Igor Veselovskii, David N. Whiteman, and Dietrich Althausen
Atmos. Meas. Tech., 9, 4269–4278, https://doi.org/10.5194/amt-9-4269-2016, https://doi.org/10.5194/amt-9-4269-2016, 2016
Volker Freudenthaler
Atmos. Meas. Tech., 9, 4181–4255, https://doi.org/10.5194/amt-9-4181-2016, https://doi.org/10.5194/amt-9-4181-2016, 2016
Simone Kotthaus, Ewan O'Connor, Christoph Münkel, Cristina Charlton-Perez, Martial Haeffelin, Andrew M. Gabey, and C. Sue B. Grimmond
Atmos. Meas. Tech., 9, 3769–3791, https://doi.org/10.5194/amt-9-3769-2016, https://doi.org/10.5194/amt-9-3769-2016, 2016
Short summary
Short summary
Ceilometers lidars are useful to study clouds, aerosol layers and atmospheric boundary layer structures. As sensor optics and acquisition algorithms can strongly influence the observations, sensor specifics need to be incorporated into the physical interpretation. Here, recommendations are made for the operation and processing of profile observations from the widely deployed Vaisala CL31 ceilometer. Proposed corrections are shown to increase data quality and even data availability at times.
Maxime Hervo, Yann Poltera, and Alexander Haefele
Atmos. Meas. Tech., 9, 2947–2959, https://doi.org/10.5194/amt-9-2947-2016, https://doi.org/10.5194/amt-9-2947-2016, 2016
Short summary
Short summary
Imperfections in a lidar's overlap function lead to artefacts in the lidar (Light Detection and Ranging) signals. These artefacts can erroneously be interpreted as an aerosol gradient or, in extreme cases, as a cloud base leading to false cloud detection. In this study an algorithm is presented to correct such artefacts.
The algorithm is completely automatic and does not require any intervention on site. It is therefore suited for use in large automatic lidar networks.
Aaron R. Naeger, Pawan Gupta, Bradley T. Zavodsky, and Kevin M. McGrath
Atmos. Meas. Tech., 9, 2463–2482, https://doi.org/10.5194/amt-9-2463-2016, https://doi.org/10.5194/amt-9-2463-2016, 2016
Short summary
Short summary
In this study, we merge aerosol information from multiple satellite sensors on board low-earth orbiting (LEO) and geostationary (GEO) platforms in order to provide a more comprehensive understanding of the spatial distribution of aerosols compared to when only using single sensors as is commonly done. Our results show that merging aerosol information from LEO and GEO platforms can be very useful, which paves the way for applications to the more advanced next-generation of satellites.
Ronny Engelmann, Thomas Kanitz, Holger Baars, Birgit Heese, Dietrich Althausen, Annett Skupin, Ulla Wandinger, Mika Komppula, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Ina Mattis, Holger Linné, and Albert Ansmann
Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, https://doi.org/10.5194/amt-9-1767-2016, 2016
Short summary
Short summary
The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly
was developed at TROPOS in 2003. This lidar type was continuously improved with gained experience from EARLINET, worldwide field campaigns, and institute collaborations within the last 10 years. We present recent changes to the setup of our portable multiwavelength Raman and polarization lidar PollyXT.
Zongming Tao, Zhenzhu Wang, Shijun Yang, Huihui Shan, Xiaomin Ma, Hui Zhang, Sugui Zhao, Dong Liu, Chenbo Xie, and Yingjian Wang
Atmos. Meas. Tech., 9, 1369–1376, https://doi.org/10.5194/amt-9-1369-2016, https://doi.org/10.5194/amt-9-1369-2016, 2016
Short summary
Short summary
A new measurement technology of PM2.5 mass concentration profile near ground is addressed using a CCD side-scatter lidar and a PM2.5 detector.
The PM2.5 mass concentration profile can be built upon the vertical distribution of the extinction coefficient for aerosol. The PM2.5 is always loading in the planet boundary layer with a complex muti-layer structure. The new method for PM2.5 mass concentration profile is useful for improving our understanding of air quality and atmospheric environment.
Cited articles
Ackerman, S. A.: Using the radiative temperature difference at 3.7 and 11 µm to tract dust outbreaks, Remote Sens. Environ., 27, 129–133, https://doi.org/10.1016/0034-4257(89)90012-6, 1989.
Ackerman, S. A.: Remote sensing aerosols using satellite infrared
observations, J. Geophys. Res.-Atmos., 102, 17069–17079,
https://doi.org/10.1029/96jd03066, 1997.
Adams, A. M., Prospero, J. M., and Zhang, C.: CALIPSO-Derived
three-dimensional structure of aerosol over the atlantic basin and adjacent
continents, J. Climate, 25, 6862–6879, https://doi.org/10.1175/JCLI-D-11-00672.1,
2012.
Ahmadov, R., Grell, G., James, E., Csiszar, I., Tsidulko, M., Pierce, B.,
McKeen, S., Benjamin, S., Alexander, C., Pereira, G., Freitas, S., and
Goldberg, M.: Using VIIRS Fire Radiative Power data to simulate biomass
burning emissions, plume rise and smoke transport in a real-time air
quality modeling system, in: Int. Geosci. Remote Se., Fort Worth, TX, 23–28 July 2017, 2806–2808, 2017.
Ashpole, I. and Washington, R.: An automated dust detection using SEVIRI: A
multiyear climatology of summertime dustiness in the central and western
Sahara, J. Geophys. Res., 117, D08202, https://doi.org/10.1029/2011JD016845, 2012.
Banks, J. R., Hünerbein, A., Heinold, B., Brindley, H. E., Deneke, H., and Schepanski, K.: The sensitivity of the colour of dust in MSG-SEVIRI Desert Dust infrared composite imagery to surface and atmospheric conditions, Atmos. Chem. Phys., 19, 6893–6911, https://doi.org/10.5194/acp-19-6893-2019, 2019.
Benedetti, A., Morcrette, J. J., Boucher, O., Dethof, A., Engelen, R. J.,
Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S.,
Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis
and forecast in the European Centre for Medium-Range Weather Forecasts
integrated forecast system: 2. data assimilation, J. Geophys. Res., 114, D13205, https://doi.org/10.1029/2008JD011115, 2009.
Berndt, E. and Folmer, M.: Utility of CrIS/ATMS profiles to diagnose
extratropical transition, Results Phys., 8, 184–185,
https://doi.org/10.1016/j.rinp.2017.12.006, 2018.
Berndt, E., Elmer, N., Schultz, L., and Molthan, A.: A Methodology to Determine Recipe Adjustments for Multispectral Composites Derived from Next-Generation Advanced Satellite Imagers, J. Atmos. Ocean. Tech., 35, 643–664, 2018.
Berndt, E. B., Zavodsky, B. T., and Folmer, M. J.: Development and
Application of Atmospheric Infrared Sounder Ozone Retrieval Products for
Operational Meteorology, IEEE T. Geosci. Remote, 54, 958–967,
https://doi.org/10.1109/TGRS.2015.2471259, 2016.
Berndt, E. B., White, K. D., Smith, N., and Esmaili, R.: Operational
Transition of Gridded NUCAPS to NOAA NWS and Emerging Applications, in AMS
16th Annual Symposium on New Generation Operational Enviornmental Satellite
Systems, Boston, MA, 13 January 2020, available at: https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/367631, last access: 28 April 2020.
Bloch, C., Knuteson, R. O., Gambacorta, A., Nalli, N. R., Gartzke, J., and
Zhou, L.: Near-Real-Time Surface-Based CAPE from Merged Hyperspectral IR
Satellite Sounder and Surface Meteorological Station Data, J. Appl.
Meteorol. Climatol., 58, 1613–1632, https://doi.org/10.1175/JAMC-D-18-0155.1, 2019.
Boukabara, S. A., Garrett, K., Chen, W., Iturbide-Sanchez, F., Grassotti,
C., Kongoli, C., Chen, R., Liu, Q., Yan, B., Weng, F., Ferraro, R.,
Kleespies, T. J., and Meng, H.: MiRS: An all-weather 1DVAR satellite data
assimilation and retrieval system, IEEE T. Geosci. Remote, 49,
3249–3272, https://doi.org/10.1109/TGRS.2011.2158438, 2011.
Carlson, T. N. and Ludlam, F. H.: Conditions for the occurrence of severe
local storms, Tellus A, 20, 203–226, https://doi.org/10.3402/tellusa.v20i2.10002,
1968.
Chaboureau, J. P., Tulet, P., and Mari, C.: Diurnal cycle of dust and cirrus
over West Africa as seen from Meteosat Second Generation satellite and a
regional forecast model, Geophys. Res. Lett., 34, 2–6,
https://doi.org/10.1029/2006GL027771, 2007.
Cho, H. M., Nasiri, S. L., Yang, P., Laszlo, I., and Zhao, X. T.: Detection
of optically thin mineral dust aerosol layers over the ocean using MODIS, J.
Atmos. Ocean. Tech., 30, 896–916, https://doi.org/10.1175/JTECH-D-12-00079.1,
2013.
Collins, W. D., Rasch, P. J., Eaton, B. E., Khattatov, B. V., Lamarque, J.
F., and Zender, C. S.: Simulating aerosols using a chemical transport model
with assimilation of satellite aerosol retrievals: Methodology for INDOEX,
J. Geophys. Res.-Atmos., 106, 7313–7336, https://doi.org/10.1029/2000JD900507,
2001.
Csiszar, I., Schroeder, W., Giglio, L., Ellicott, E., Vadrevu, K. P.,
Justice, C. O., and Wind, B.: Active fires from the Suomi NPP Visible
Infrared Imaging Radiometer Suite: Product status and first evaluation
results Ivan, J. Geophys. Res.-Atmos., 119, 803–816, https://doi.org/10.1002/2013JD020453, 2014.
Darmenov, A. and Sokolik, I. N.: Identifying the regional thermal-IR
radiative signature of mineral dust with MODIS, Geophys. Res. Lett.,
32, L16803, https://doi.org/10.1029/2005GL023092, 2005.
Dunion, J. P. and Velden, C. S.: The Impact of the Saharan Air Layer on
Atlantic Tropical Cyclone Activity, B. Am. Meteorol. Soc., 85,
353–365, https://doi.org/10.1175/BAMS-85-3-353, 2004.
Esmaili, R. B., Smith, N., Berndt, E. B., Dostalek, J. F., Kahn, B. H.,
White, K., Barnet, C. D., Sjoberg, W., and Goldberg, M.: Adapting satellite
soundings for operational forecasting within the hazardous weather testbed,
Remote Sens., 12, 886, https://doi.org/10.3390/rs12050886, 2020.
Forsythe, J. M., Kidder, S. Q., Fuell, K. K., Leroy, A., Jedlovec, G. J., and
Jones, A. S.: A Multisensor, Blended, Layered Water Vapor Product for
Weather Analysis and Forecasting, J. Oper. Meteorol., 3, 41–58, 2015.
Gambacorta, A.: The NOAA Unique CrIS/ATMS Processing System (NUCAPS):
Algorithm Theoretical Basis Documentation, Version 1.0, NOAA, available at: https://www.ospo.noaa.gov/Products/atmosphere/soundings/nucaps/docs/NUCAPS_ATBD_20130821.pdf (last access: 16 February 2021), 2013.
Gambacorta, A. and Barnet, C. D.: Methodology and information content of the
NOAA NESDIS operational channel selection for the cross-track infrared
sounder (CrIS), IEEE T. Geosci. Remote, 51, 3207–3216,
https://doi.org/10.1109/TGRS.2012.2220369, 2013.
Gitro, C. M., Jurewicz, Sr., M. L., Kusselson, S. J., Forsythe, J. M.,
Kidder, S. Q., Szoke, E. J., Bikos, D., Jones, A. S., Gravelle, C. M., and
Grassotti, C.: Using the Multisensor Advected Layered Precipitable Water
Product in the Operational Forecast Environment, J. Oper. Meteorol., 06,
59–73, https://doi.org/10.15191/nwajom.2018.0606, 2018.
Goldberg, M. D., Kilcoyne, H., Cikanek, H., and Mehta, A.: Joint Polar
Satellite System: The United States next generation civilian polar-orbiting
environmental satellite system, J. Geophys. Res.-Atmos., 118,
13463–13475, https://doi.org/10.1002/2013JD020389, 2013.
Goodman, S., Schmit, T., Daniels, J., and Redmon, R.: The GOES-R
Series: A New Generation of Geostationary Environmental Satellites, 1st edn.,
Elsevier, Amsterdam, Netherlands, Oxford, United Kingdom, Cambridge, United States, 2019.
Goodman, S. J., Gurka, J., De Maria, M., Schmit, T. J., Mostek, A.,
Jedlovec, G., Siewert, C., Feltz, W., Gerth, J., Brummer, R., Miller, S.,
Reed, B., and Reynolds, R. R.: The goes-R proving ground: Accelerating user
readiness for the next-generation geostationary environmental satellite
system, B. Am. Meteorol. Soc., 93, 1029–1040,
https://doi.org/10.1175/BAMS-D-11-00175.1, 2012.
Han, Y., Weng, F., P., Liu, and van Delst, P.: A fast radiative transfer model for SSMIS upper atmospheric sounding channels, J. Geophys. Res.-Atmos., 112, D11121, https://doi.org/1029/2006JD008208, 2007.
Hao, X. and Qu, J. J.: Saharan dust storm detection using moderate
resolution imaging spectroradiometer thermal infrared bands, J. Appl. Remote
Sens., 1, 013510, https://doi.org/10.1117/1.2740039, 2007.
Heidinger, A. K., Li, Y., Baum, B. A., Holz, R. E., Platnick, S., and Yang,
P.: Retrieval of cirrus cloud optical depth under day and night conditions
from MODIS Collection 6 cloud property data, Remote Sens., 7, 7257–7271,
https://doi.org/10.3390/rs70607257, 2015.
Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., and Celarier,
E.: Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J.
Geophys. Res.-Atmos., 102, 16911–16922, https://doi.org/10.1029/96jd03680, 1997.
Hillger, D. and Ellrod G. P.: Detection of important atmospheric and
surface features by employing principal component image transformation of
GOES imagery, J. Appl. Meteorol. Climatol., 42, 611–629,
https://doi.org/10.1175/1520-0450(2003)042<0611:DOIAAS>2.0.CO;2, 2003.
Hillger, D., Kopp, T., Lee, T., Lindsey, D., Seaman, C., Miller, S.,
Solbrig, J., Kidder, S., Bachmeier, S., Jasmin, T., and Rink, T.: First-light
imagery from Suomi NPP VIIRS, B. Am. Meteorol. Soc., 94, 1019–1029,
https://doi.org/10.1175/BAMS-D-12-00097.1, 2013.
Hillger, D., Seaman, C., Liang, C., Miller, S., Lindsey, D., and Kopp, T.:
Suomi NPP VIIRS Imagery evaluation, J. Geophys. Res., 119, 6440–6455, https://doi.org/10.1002/2013JD021170, 2014.
Holton, J. R.: An Introduction to Dynamic Meteorology, Academic
Press, New York, 1979.
Hunt, W. H., Vaughan, M. A., Powell, K. A., and Weimer, C.: CALIPSO lidar
description and performance assessment, J. Atmos. Ocean. Tech., 26,
1214–1228, https://doi.org/10.1175/2009JTECHA1223.1, 2009.
Iturbide-Sanchez, F., Da Silva, S. R. S., Liu, Q., Pryor, K. L., Pettey, M.
E., and Nalli, N. R.: Toward the operational weather forecasting application
of atmospheric stability products derived from NUCAPS CrIS/ATMS Soundings,
IEEE T. Geosci. Remote, 56, 4522–4545,
https://doi.org/10.1109/TGRS.2018.2824829, 2018.
Kalluri, S., Alcala, C., Carr, J., Griffith, P., Lebair, W., Lindsey, D.,
Race, R., Wu, X., and Zierk, S.: From photons to pixels: Processing data from
the Advanced Baseline Imager, Remote Sens., 10, 177, https://doi.org/10.3390/rs10020177, 2018.
King, M. D., Kaufman, Y. J., Menzel, W. P., and Tanre, D.: Remote sensing of
cloud, aerosol, and water vapor properties from the moderate resolution
imaging spectrometer (MODIS), IEEE T. Geosci. Remote, 30, 2–27, https://doi.org/10.1109/36.124212, 1992.
Knippertz, P. and Todd, M. C.: The central west Saharan dust hot spot and
its relation to African easterly waves and extratropical disturbances, J.
Geophys. Res.-Atmos., 115, 1–14, https://doi.org/10.1029/2009JD012819, 2010.
Kuciauskas, A. P., Xian, P., Hyer, E. J., Oyola, M. I., and Campbell, J. R.:
Supporting weather forecasters in predicting and monitoring Saharan air
layer dust events as they impact the greater Caribbean, B. Am. Meteorol.
Soc., 99, 259–268, https://doi.org/10.1175/BAMS-D-16-0212.1, 2018.
Lanicci, J. M. and Warner, T. T.: A Synoptic Climatology of the Elevated
Mixed-Layer Inversion over the Southern Great Plains in Spring. Part III:
Relationship to Severe-Storms Climatology, Weather Forecast., 6, 214–226
1991.
Lee, E., Županski, M., Županski, D., and Park, S. K.: Impact of the
OMI aerosol optical depth on analysis increments through coupled
meteorology–aerosol data assimilation for an Asian dust storm, Remote Sens.
Environ., 193, 38–53, https://doi.org/10.1016/j.rse.2017.02.013, 2017.
Legrand, M., Berthand, J. J., Desbois, M., Menenger, L., and Fouquart, Y.:
The Potential of Infrared Satellite Data for the Retrieval of Saharan-Dust
Optical Depth over Africa, J. Appl. Meteorol., 28, 309–318,
https://doi.org/10.1175/1520-0450(1989)028<0309:TPOISD>2.0.CO;2, 1989.
Legrand, M., Plana-Fattori, A., and N'Doumé, C.: Satellite detection of
dust using the IR imagery of Meteosat 1. Infrared difference dust index, J.
Geophys. Res.-Atmos., 106, 18251–18274, https://doi.org/10.1029/2000JD900749,
2001.
Lensky, I. M. and Rosenfeld, D.: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT), Atmos. Chem. Phys., 8, 6739–6753, https://doi.org/10.5194/acp-8-6739-2008, 2008.
LeRoy, A., Fuell, K., Molthan, A., Jedlovec, G., Forsythe, J., Kidder, S.,
and Jones, A.: The operational use and assessment of a layered precipitable
water product for weather forecasting, J. Oper. Meteorol., 4, 22–33,
https://doi.org/10.15191/nwajom.2016.0402, 2016.
Liu, Z., Omar, A. H., Hu, Y., Vaughan, M. A., and Winker, D. M.: CALIOP
Algorithm Theoretical Basis Document. Part 3: Scene classification
algorithms, 1–56, available at:
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part3_v1.0.pdf (last access: 10 February 2021), 2005.
Lu, C.-H., da Silva, A., Wang, J., Moorthi, S., Chin, M., Colarco, P., Tang, Y., Bhattacharjee, P. S., Chen, S.-P., Chuang, H.-Y., Juang, H.-M. H., McQueen, J., and Iredell, M.: The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP, Geosci. Model Dev., 9, 1905–1919, https://doi.org/10.5194/gmd-9-1905-2016, 2016.
Lu, S., Wei, S., Kondragunta, S., Zhao, Q., Mcqueen, J., Wang, J., and
Bhattacharjee, P.: NCEP Aerosol Data Assimilation Update: Improving NCEP
global aerosol forecasts using JPSS-NPP VIIRS aerosol products, in: ICAP
Working Group Meeting, College Park, MD, 1–31, 2016b.
Lynch, P., Reid, J. S., Westphal, D. L., Zhang, J., Hogan, T. F., Hyer, E. J., Curtis, C. A., Hegg, D. A., Shi, Y., Campbell, J. R., Rubin, J. I., Sessions, W. R., Turk, F. J., and Walker, A. L.: An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences, Geosci. Model Dev., 9, 1489–1522, https://doi.org/10.5194/gmd-9-1489-2016, 2016.
Miller, S. D.: A consolidated technique for enhancing desert dust storms
with MODIS, Geophys. Res. Lett., 30, 2071, https://doi.org/10.1029/2003GL018279, 2003.
Miller, S. D., Mills, S. P., Elvidge, C. D., Lindsey, D. T., Lee, T. F., and
Hawkins, J. D.: Suomi satellite brings to light a unique frontier of
nighttime environmental sensing capabilities, P. Natl. Acad. Sci. USA, 109, 15706–15711, https://doi.org/10.1073/pnas.1207034109, 2012.
Miller, S. D., Straka, W., Mills, S. P., Elvidge, C. D., Lee, T. F.,
Solbrig, J., Walther, A., Heidinger, A. K., and Weiss, S. C.: Illuminating
the capabilities of the suomi national Polar-orbiting partnership (NPP)
visible infrared imaging radiometer suite (VIIRS) day/night Band, Remote
Sens., 5, 6717–6766, https://doi.org/10.3390/rs5126717, 2013.
Miller, S. D., Schmit, T. L., Seaman, C. J., Lindsey, D. T., Gunshor, M. M.,
Kohrs, R. A., Sumida, Y., and Hillger, D.: A sight for sore eyes: The return
of true color to geostationary satellites, B. Am. Meteorol. Soc., 97,
1803–1816, https://doi.org/10.1175/BAMS-D-15-00154.1, 2016.
Miller, S. D., Bankert, R. L., Solbrig, J. E., Forsythe, J. M., Noh, Y.-J.,
and Grasso, L. D.: A Dynamic Enhancement With Background Reduction
Algorithm: Overview and Application to Satellite-Based Dust Storm Detection,
J. Geophys. Res.-Atmos., 122, 938–959, https://doi.org/10.1002/2017JD027365, 2017.
Miller, S. D., Grasso, L. D., Bian, Q., Kreidenweis, S. M., Dostalek, J. F., Solbrig, J. E., Bukowski, J., van den Heever, S. C., Wang, Y., Xu, X., Wang, J., Walker, A. L., Wu, T.-C., Zupanski, M., Chiu, C., and Reid, J. S.: A Tale of Two Dust Storms: analysis of a complex dust event in the Middle East, Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019, 2019.
Miller, S. D., Lindsey, D. T., Seaman, C. J., and Solbrig, J. E.: Geocolor: A
blending technique for satellite imagery, J. Atmos. Ocean. Tech., 37,
429–448, https://doi.org/10.1175/JTECH-D-19-0134.1, 2020.
Morcrette, J. J., Beljaars, A., Benedetti, A., Jones, L., and Boucher, O.:
Sea-salt and dust aerosols in the ECMWF IFS model, Geophys. Res. Lett., 35, L24813, https://doi.org/10.1029/2008GL036041, 2008.
Nalli, N. R., Barnet, C. D., Reale, T., Liu, Q., Morris, V. R., Spackman, J.
R., Joseph, E., Tan, C., Sun, B., Tilley, F., Ruby Leung, L., and Wolfe, D.:
Satellite sounder observations of contrasting tropospheric moisture
transport regimes: Saharan air layers, hadley cells, and atmospheric rivers,
J. Hydrometeorol., 17, 2997–3006, https://doi.org/10.1175/JHM-D-16-0163.1, 2016.
NOAA: Comprehensive Large Array-data Stewardship System (CLASS), available at: https://www.class.noaa.gov, last access: 15 March 2020.
Pagowski, M., Liu, Z., Grell, G. A., Hu, M., Lin, H.-C., and Schwartz, C. S.: Implementation of aerosol assimilation in Gridpoint Statistical Interpolation (v. 3.2) and WRF-Chem (v. 3.4.1), Geosci. Model Dev., 7, 1621–1627, https://doi.org/10.5194/gmd-7-1621-2014, 2014.
Pierangelo, C., Chédin, A., Heilliette, S., Jacquinet-Husson, N., and Armante, R.: Dust altitude and infrared optical depth from AIRS, Atmos. Chem. Phys., 4, 1813–1822, https://doi.org/10.5194/acp-4-1813-2004, 2004.
Prospero, J. M. and Carlson, T. N.: Vertical and areal distribution of
Saharan dust over the western equatorial north Atlantic Ocean, J. Geophys.
Res., 77, 5255–5265, https://doi.org/10.1029/JC077i027p05255, 1972.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka,
Y., and Flynn, C. J.: The MERRA-2 aerosol reanalysis, 1980 onward. Part I:
Description and Data assimilation Evaluation, J. Climate, 30, 6823–6850,
https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.
Rubin, J. I., Reid, J. S., Hansen, J. A., Anderson, J. L., Holben, B. N.,
Xian, P., Westphal, D. L., and Zhang, J.: Assimilation of AERONET and MODIS
AOT observations using variational and ensemble data assimilation methods
and its impact on aerosol forecasting skill, J. Geophys. Res., 122,
4967–4992, https://doi.org/10.1002/2016JD026067, 2017.
Schlueter, A., Fink, A. H., and Knippertz, P.: A systematic comparison of
tropical waves over Northern Africa. Part II: Dynamics and thermodynamics,
J. Climate, 32, 2605–2625, https://doi.org/10.1175/JCLI-D-18-0651.1, 2019.
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S. and
Ratier, A.: An Introduction to Meteosat Second Generation (MSG), B. Am.
Meteorol. Soc., 83, 977–992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2, 2002.
Schmit, T. J., Li, J., Gurka, J. J., Goldberg, M. D., Schrab, K. J., Li, J.,
and Feltz, W. F.: The GOES-R advanced baseline imager and the continuation
of current sounder products, J. Appl. Meteorol. Climatol., 47,
2696–2711, https://doi.org/10.1175/2008JAMC1858.1, 2008.
Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J.,
and Lebair, W. J.: A closer look at the ABI on the goes-r series, B. Am.
Meteorol. Soc., 98, 681–698, https://doi.org/10.1175/BAMS-D-15-00230.1, 2017.
Schmit, T. J., Lindstrom, S. S., Gerth, J. J., and Gunshor, M. M.:
Applications of the 16 spectral bands on the Advanced Baseline Imager
(ABI)., J. Oper. Meteorol., 06(04), 33–46, https://doi.org/10.15191/nwajom.2018.0604,
2018.
Shenk, W. E. and Curran, R. J.: The Detection of Dust Storms Over Land and
Water With Satellite Visible and Infrared Measurements, Mon. Weather Rev.,
102, 830–837, https://doi.org/10.1175/1520-0493(1974)102<0830:tdodso>2.0.co;2, 1974.
Shimizu, A.: Introduction of JMA VLab Support Site on RGB Composite
Imagery and tentative RGBs, The 6th Asia/Oceania Meteorological Satellite
Users' Conference, Tokyo, Japan, 9–13 November 2015, available at:
http://www.data.jma.go.jp/mscweb/en/aomsuc6_data/presentations.html (last access: 10 February 2021), 2015.
Tanaka, T. Y. and Chiba, M.: Global simulation of dust aerosol with a
chemical transport model, MASINGAR, J. Meteorol. Soc. Jpn., 83,
255–278, https://doi.org/10.2151/jmsj.83a.255, 2005.
Tanre, D. and Legrand, M.: On the satellite retrieval of Saharan dust
optical thickness over land: two different approaches, J. Geophys. Res.,
96, 5221–5227, https://doi.org/10.1029/90JD02607, 1991.
Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., and Gleason, J.:
Derivation of aerosol properties from satellite measurements of
backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res.-Atmos., 103, 17099–17110, https://doi.org/10.1029/98JD02709, 1998.
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P.
K., Veefkind, P., and Levelt, P.: Aerosols and surface UV products form Ozone
Monitoring Instrument observations: An overview, J. Geophys. Res.-Atmos.,
112, D24S47, https://doi.org/10.1029/2007JD008809, 2007.
Wang, H. and Niu, T.: Sensitivity studies of aerosol data assimilation and
direct radiative feedbacks in modeling dust aerosols, Atmos. Environ., 64,
208–218, https://doi.org/10.1016/j.atmosenv.2012.09.066, 2013.
Wang, J., Christopher, S. A., Brechtel, F., Kim, J., Schmid, B., Redemann,
J., Russell, P. B., Quinn, P., and Holben, B. N.: Geostationary satellite
retrievals of aerosol optical thickness during ACE-Asia, J. Geophys. Res.,
108, 8657, https://doi.org/10.1029/2003JD003580, 2003.
Weaver, C., da Silva, A., Chin, M., Ginoux, P., Dubovik, O., Flittner, D.,
Zia, A., Remer, L., Holben, B., and Gregg, W.: Direct Insertion of MODIS
Radiances in a Global Aerosol Transport Model, J. Atmos. Sci., 64,
808–827, https://doi.org/10.1175/JAS3838.1, 2007.
Weaver, G. M., Smith, N., Berndt, E. B., While, K. D., Dostalek, J. F., and
Zavodsky, B. T.: Addressing the Cold Air Aloft Aviation Challenge with
Satellite Sounding Observations, J. Oper. Meteorol., 7, 138–152,
https://doi.org/10.15191/nwajom.2019.0710, 2019.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP
data processing algorithms, J. Atmos. Ocean. Tech., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Xian, P., Reid, J. S., Hyer, E. J., Sampson, C. R., Rubin, J. I., Asencio,
N., Basart, S., Benedetti, A., Bhattacharjee, P., Malcolm, E., Colarco, P.
R., Silva, D., Eck, T. F., Guth, J., Jorba, O., Tanaka, T., Wang, J.,
Westphal, D. L., and Yumimoto, K.: Current State of the global operational
aerosol multi-model ensemble: an update from the International Cooperative
for Aerosol Prediction (ICAP), Q. J. R. Meteorol. Soc., 176–209,
https://doi.org/10.1002/qj.3497, 2019.
Yumimoto, K., Tanaka, T. Y., Yoshida, M., Kikuchi, M., Nagao, T. M.,
Murakami, H., and Maki, T.: Assimilation and forecasting experiment for heavy
siberian wildfire smoke in may 2016 with himawari-8 aerosol optical
thickness, J. Meteorol. Soc. Jpn., 96B, 133, https://doi.org/10.2151/jmsj.2018-035, 2018.
Zhang, J., Campbell, J. R., Hyer, E. J. E. J., Reid, J. S., Westphal, D. L.,
and Johnson, R. S.: Evaluating the impact of multisensor data assimilation
on a global aerosol particle transport model, J. Geophys. Res.-Atmos.,
119, 4674–4689, https://doi.org/10.1002/2013JD020975, 2014.
Zhao, T. X. P., Ackerman, S., and Guo, W.: Dust and smoke detection for
multi-channel imagers, Remote Sens., 2, 2347–2368, https://doi.org/10.3390/rs2102347,
2010.
Short summary
This study uses geostationary imagery to detect dust. This research was done to demonstrate the ability of dust detection over ocean surfaces in a dry atmosphere.
This study uses geostationary imagery to detect dust. This research was done to demonstrate the...