Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1615-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-1615-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite imagery and products of the 16–17 February 2020 Saharan Air Layer dust event over the eastern Atlantic: impacts of water vapor on dust detection and morphology
Lewis Grasso
CORRESPONDING AUTHOR
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Daniel Bikos
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Jorel Torres
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
John F. Dostalek
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Ting-Chi Wu
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
John Forsythe
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Heather Q. Cronk
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Curtis J. Seaman
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Steven D. Miller
Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA
Emily Berndt
NASA Marshall Space Flight Center, Short-term Prediction Research and Transition Center, Huntsville, AL, USA
Harry G. Weinman
NOAA/NWS Miami-South Florida Weather Forecast Office, Miami, FL, USA
Kennard B. Kasper
NOAA/NWS Florida Keys Weather Forecast Office, Key West, FL, USA
Related authors
No articles found.
Jianglong Zhang, Jeffrey S. Reid, Blake T. Sorenson, Steven D. Miller, Miguel O. Román, Zhuosen Wang, Robert J. D. Spurr, Shawn Jaker, Thomas F. Eck, and Juli I. Rubin
Atmos. Meas. Tech., 18, 1787–1810, https://doi.org/10.5194/amt-18-1787-2025, https://doi.org/10.5194/amt-18-1787-2025, 2025
Short summary
Short summary
Using observations from the Visible Infrared Imaging Radiometer Suite day–night band, we developed a method for constructing gridded nighttime aerosol optical thickness (AOT) data based on the spatial derivative of measured top-of-atmosphere attenuated upwelling artificial lights at night. The gridded nighttime AOT retrievals, compared against Aerosol Robotic Network data, show reasonable skill levels for potential data assimilation, air quality, and climate studies of significant events.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Jianglong Zhang, Jeffrey S. Reid, Steven D. Miller, Miguel Román, Zhuosen Wang, Robert J. D. Spurr, and Shawn Jaker
Atmos. Meas. Tech., 16, 2531–2546, https://doi.org/10.5194/amt-16-2531-2023, https://doi.org/10.5194/amt-16-2531-2023, 2023
Short summary
Short summary
We adapted the spherical harmonics discrete ordinate method 3-dimentional radiative transfer model (3-D RTM) and developed a nighttime 3-D RTM capability for simulating top-of-atmosphere radiances from artificial light sources for aerosol retrievals. Our study suggests that both aerosol optical depth and aerosol plume height can be effectively retrieved using nighttime observations over artificial light sources, through the newly developed radiative transfer modeling capability.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023, https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Short summary
This paper provides insights into the effects of clouds on Orbiting Carbon Observatory (OCO-2) measurements of CO2. Calculations are carried out that indicate the extent to which this satellite experiment underestimates CO2, due to these cloud effects, as a function of the distance between the surface observation footprint and the nearest cloud. The paper discusses how to lessen the influence of these cloud effects.
Steven T. Massie, Heather Cronk, Aronne Merrelli, Christopher O'Dell, K. Sebastian Schmidt, Hong Chen, and David Baker
Atmos. Meas. Tech., 14, 1475–1499, https://doi.org/10.5194/amt-14-1475-2021, https://doi.org/10.5194/amt-14-1475-2021, 2021
Short summary
Short summary
The OCO-2 science team is working to retrieve CO2 measurements that can be used by the carbon cycle community to calculate regional sources and sinks of CO2. The retrieved data, however, are in need of improvements in accuracy. This paper discusses several ways in which 3D cloud metrics (such as the distance of a measurement to the nearest cloud) can be used to account for cloud effects in the OCO-2 CO2 data files.
Cited articles
Ackerman, S. A.: Using the radiative temperature difference at 3.7 and 11 µm to tract dust outbreaks, Remote Sens. Environ., 27, 129–133, https://doi.org/10.1016/0034-4257(89)90012-6, 1989.
Ackerman, S. A.: Remote sensing aerosols using satellite infrared
observations, J. Geophys. Res.-Atmos., 102, 17069–17079,
https://doi.org/10.1029/96jd03066, 1997.
Adams, A. M., Prospero, J. M., and Zhang, C.: CALIPSO-Derived
three-dimensional structure of aerosol over the atlantic basin and adjacent
continents, J. Climate, 25, 6862–6879, https://doi.org/10.1175/JCLI-D-11-00672.1,
2012.
Ahmadov, R., Grell, G., James, E., Csiszar, I., Tsidulko, M., Pierce, B.,
McKeen, S., Benjamin, S., Alexander, C., Pereira, G., Freitas, S., and
Goldberg, M.: Using VIIRS Fire Radiative Power data to simulate biomass
burning emissions, plume rise and smoke transport in a real-time air
quality modeling system, in: Int. Geosci. Remote Se., Fort Worth, TX, 23–28 July 2017, 2806–2808, 2017.
Ashpole, I. and Washington, R.: An automated dust detection using SEVIRI: A
multiyear climatology of summertime dustiness in the central and western
Sahara, J. Geophys. Res., 117, D08202, https://doi.org/10.1029/2011JD016845, 2012.
Banks, J. R., Hünerbein, A., Heinold, B., Brindley, H. E., Deneke, H., and Schepanski, K.: The sensitivity of the colour of dust in MSG-SEVIRI Desert Dust infrared composite imagery to surface and atmospheric conditions, Atmos. Chem. Phys., 19, 6893–6911, https://doi.org/10.5194/acp-19-6893-2019, 2019.
Benedetti, A., Morcrette, J. J., Boucher, O., Dethof, A., Engelen, R. J.,
Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S.,
Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis
and forecast in the European Centre for Medium-Range Weather Forecasts
integrated forecast system: 2. data assimilation, J. Geophys. Res., 114, D13205, https://doi.org/10.1029/2008JD011115, 2009.
Berndt, E. and Folmer, M.: Utility of CrIS/ATMS profiles to diagnose
extratropical transition, Results Phys., 8, 184–185,
https://doi.org/10.1016/j.rinp.2017.12.006, 2018.
Berndt, E., Elmer, N., Schultz, L., and Molthan, A.: A Methodology to Determine Recipe Adjustments for Multispectral Composites Derived from Next-Generation Advanced Satellite Imagers, J. Atmos. Ocean. Tech., 35, 643–664, 2018.
Berndt, E. B., Zavodsky, B. T., and Folmer, M. J.: Development and
Application of Atmospheric Infrared Sounder Ozone Retrieval Products for
Operational Meteorology, IEEE T. Geosci. Remote, 54, 958–967,
https://doi.org/10.1109/TGRS.2015.2471259, 2016.
Berndt, E. B., White, K. D., Smith, N., and Esmaili, R.: Operational
Transition of Gridded NUCAPS to NOAA NWS and Emerging Applications, in AMS
16th Annual Symposium on New Generation Operational Enviornmental Satellite
Systems, Boston, MA, 13 January 2020, available at: https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/367631, last access: 28 April 2020.
Bloch, C., Knuteson, R. O., Gambacorta, A., Nalli, N. R., Gartzke, J., and
Zhou, L.: Near-Real-Time Surface-Based CAPE from Merged Hyperspectral IR
Satellite Sounder and Surface Meteorological Station Data, J. Appl.
Meteorol. Climatol., 58, 1613–1632, https://doi.org/10.1175/JAMC-D-18-0155.1, 2019.
Boukabara, S. A., Garrett, K., Chen, W., Iturbide-Sanchez, F., Grassotti,
C., Kongoli, C., Chen, R., Liu, Q., Yan, B., Weng, F., Ferraro, R.,
Kleespies, T. J., and Meng, H.: MiRS: An all-weather 1DVAR satellite data
assimilation and retrieval system, IEEE T. Geosci. Remote, 49,
3249–3272, https://doi.org/10.1109/TGRS.2011.2158438, 2011.
Carlson, T. N. and Ludlam, F. H.: Conditions for the occurrence of severe
local storms, Tellus A, 20, 203–226, https://doi.org/10.3402/tellusa.v20i2.10002,
1968.
Chaboureau, J. P., Tulet, P., and Mari, C.: Diurnal cycle of dust and cirrus
over West Africa as seen from Meteosat Second Generation satellite and a
regional forecast model, Geophys. Res. Lett., 34, 2–6,
https://doi.org/10.1029/2006GL027771, 2007.
Cho, H. M., Nasiri, S. L., Yang, P., Laszlo, I., and Zhao, X. T.: Detection
of optically thin mineral dust aerosol layers over the ocean using MODIS, J.
Atmos. Ocean. Tech., 30, 896–916, https://doi.org/10.1175/JTECH-D-12-00079.1,
2013.
Collins, W. D., Rasch, P. J., Eaton, B. E., Khattatov, B. V., Lamarque, J.
F., and Zender, C. S.: Simulating aerosols using a chemical transport model
with assimilation of satellite aerosol retrievals: Methodology for INDOEX,
J. Geophys. Res.-Atmos., 106, 7313–7336, https://doi.org/10.1029/2000JD900507,
2001.
Csiszar, I., Schroeder, W., Giglio, L., Ellicott, E., Vadrevu, K. P.,
Justice, C. O., and Wind, B.: Active fires from the Suomi NPP Visible
Infrared Imaging Radiometer Suite: Product status and first evaluation
results Ivan, J. Geophys. Res.-Atmos., 119, 803–816, https://doi.org/10.1002/2013JD020453, 2014.
Darmenov, A. and Sokolik, I. N.: Identifying the regional thermal-IR
radiative signature of mineral dust with MODIS, Geophys. Res. Lett.,
32, L16803, https://doi.org/10.1029/2005GL023092, 2005.
Dunion, J. P. and Velden, C. S.: The Impact of the Saharan Air Layer on
Atlantic Tropical Cyclone Activity, B. Am. Meteorol. Soc., 85,
353–365, https://doi.org/10.1175/BAMS-85-3-353, 2004.
Esmaili, R. B., Smith, N., Berndt, E. B., Dostalek, J. F., Kahn, B. H.,
White, K., Barnet, C. D., Sjoberg, W., and Goldberg, M.: Adapting satellite
soundings for operational forecasting within the hazardous weather testbed,
Remote Sens., 12, 886, https://doi.org/10.3390/rs12050886, 2020.
Forsythe, J. M., Kidder, S. Q., Fuell, K. K., Leroy, A., Jedlovec, G. J., and
Jones, A. S.: A Multisensor, Blended, Layered Water Vapor Product for
Weather Analysis and Forecasting, J. Oper. Meteorol., 3, 41–58, 2015.
Gambacorta, A.: The NOAA Unique CrIS/ATMS Processing System (NUCAPS):
Algorithm Theoretical Basis Documentation, Version 1.0, NOAA, available at: https://www.ospo.noaa.gov/Products/atmosphere/soundings/nucaps/docs/NUCAPS_ATBD_20130821.pdf (last access: 16 February 2021), 2013.
Gambacorta, A. and Barnet, C. D.: Methodology and information content of the
NOAA NESDIS operational channel selection for the cross-track infrared
sounder (CrIS), IEEE T. Geosci. Remote, 51, 3207–3216,
https://doi.org/10.1109/TGRS.2012.2220369, 2013.
Gitro, C. M., Jurewicz, Sr., M. L., Kusselson, S. J., Forsythe, J. M.,
Kidder, S. Q., Szoke, E. J., Bikos, D., Jones, A. S., Gravelle, C. M., and
Grassotti, C.: Using the Multisensor Advected Layered Precipitable Water
Product in the Operational Forecast Environment, J. Oper. Meteorol., 06,
59–73, https://doi.org/10.15191/nwajom.2018.0606, 2018.
Goldberg, M. D., Kilcoyne, H., Cikanek, H., and Mehta, A.: Joint Polar
Satellite System: The United States next generation civilian polar-orbiting
environmental satellite system, J. Geophys. Res.-Atmos., 118,
13463–13475, https://doi.org/10.1002/2013JD020389, 2013.
Goodman, S., Schmit, T., Daniels, J., and Redmon, R.: The GOES-R
Series: A New Generation of Geostationary Environmental Satellites, 1st edn.,
Elsevier, Amsterdam, Netherlands, Oxford, United Kingdom, Cambridge, United States, 2019.
Goodman, S. J., Gurka, J., De Maria, M., Schmit, T. J., Mostek, A.,
Jedlovec, G., Siewert, C., Feltz, W., Gerth, J., Brummer, R., Miller, S.,
Reed, B., and Reynolds, R. R.: The goes-R proving ground: Accelerating user
readiness for the next-generation geostationary environmental satellite
system, B. Am. Meteorol. Soc., 93, 1029–1040,
https://doi.org/10.1175/BAMS-D-11-00175.1, 2012.
Han, Y., Weng, F., P., Liu, and van Delst, P.: A fast radiative transfer model for SSMIS upper atmospheric sounding channels, J. Geophys. Res.-Atmos., 112, D11121, https://doi.org/1029/2006JD008208, 2007.
Hao, X. and Qu, J. J.: Saharan dust storm detection using moderate
resolution imaging spectroradiometer thermal infrared bands, J. Appl. Remote
Sens., 1, 013510, https://doi.org/10.1117/1.2740039, 2007.
Heidinger, A. K., Li, Y., Baum, B. A., Holz, R. E., Platnick, S., and Yang,
P.: Retrieval of cirrus cloud optical depth under day and night conditions
from MODIS Collection 6 cloud property data, Remote Sens., 7, 7257–7271,
https://doi.org/10.3390/rs70607257, 2015.
Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., and Celarier,
E.: Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J.
Geophys. Res.-Atmos., 102, 16911–16922, https://doi.org/10.1029/96jd03680, 1997.
Hillger, D. and Ellrod G. P.: Detection of important atmospheric and
surface features by employing principal component image transformation of
GOES imagery, J. Appl. Meteorol. Climatol., 42, 611–629,
https://doi.org/10.1175/1520-0450(2003)042<0611:DOIAAS>2.0.CO;2, 2003.
Hillger, D., Kopp, T., Lee, T., Lindsey, D., Seaman, C., Miller, S.,
Solbrig, J., Kidder, S., Bachmeier, S., Jasmin, T., and Rink, T.: First-light
imagery from Suomi NPP VIIRS, B. Am. Meteorol. Soc., 94, 1019–1029,
https://doi.org/10.1175/BAMS-D-12-00097.1, 2013.
Hillger, D., Seaman, C., Liang, C., Miller, S., Lindsey, D., and Kopp, T.:
Suomi NPP VIIRS Imagery evaluation, J. Geophys. Res., 119, 6440–6455, https://doi.org/10.1002/2013JD021170, 2014.
Holton, J. R.: An Introduction to Dynamic Meteorology, Academic
Press, New York, 1979.
Hunt, W. H., Vaughan, M. A., Powell, K. A., and Weimer, C.: CALIPSO lidar
description and performance assessment, J. Atmos. Ocean. Tech., 26,
1214–1228, https://doi.org/10.1175/2009JTECHA1223.1, 2009.
Iturbide-Sanchez, F., Da Silva, S. R. S., Liu, Q., Pryor, K. L., Pettey, M.
E., and Nalli, N. R.: Toward the operational weather forecasting application
of atmospheric stability products derived from NUCAPS CrIS/ATMS Soundings,
IEEE T. Geosci. Remote, 56, 4522–4545,
https://doi.org/10.1109/TGRS.2018.2824829, 2018.
Kalluri, S., Alcala, C., Carr, J., Griffith, P., Lebair, W., Lindsey, D.,
Race, R., Wu, X., and Zierk, S.: From photons to pixels: Processing data from
the Advanced Baseline Imager, Remote Sens., 10, 177, https://doi.org/10.3390/rs10020177, 2018.
King, M. D., Kaufman, Y. J., Menzel, W. P., and Tanre, D.: Remote sensing of
cloud, aerosol, and water vapor properties from the moderate resolution
imaging spectrometer (MODIS), IEEE T. Geosci. Remote, 30, 2–27, https://doi.org/10.1109/36.124212, 1992.
Knippertz, P. and Todd, M. C.: The central west Saharan dust hot spot and
its relation to African easterly waves and extratropical disturbances, J.
Geophys. Res.-Atmos., 115, 1–14, https://doi.org/10.1029/2009JD012819, 2010.
Kuciauskas, A. P., Xian, P., Hyer, E. J., Oyola, M. I., and Campbell, J. R.:
Supporting weather forecasters in predicting and monitoring Saharan air
layer dust events as they impact the greater Caribbean, B. Am. Meteorol.
Soc., 99, 259–268, https://doi.org/10.1175/BAMS-D-16-0212.1, 2018.
Lanicci, J. M. and Warner, T. T.: A Synoptic Climatology of the Elevated
Mixed-Layer Inversion over the Southern Great Plains in Spring. Part III:
Relationship to Severe-Storms Climatology, Weather Forecast., 6, 214–226
1991.
Lee, E., Županski, M., Županski, D., and Park, S. K.: Impact of the
OMI aerosol optical depth on analysis increments through coupled
meteorology–aerosol data assimilation for an Asian dust storm, Remote Sens.
Environ., 193, 38–53, https://doi.org/10.1016/j.rse.2017.02.013, 2017.
Legrand, M., Berthand, J. J., Desbois, M., Menenger, L., and Fouquart, Y.:
The Potential of Infrared Satellite Data for the Retrieval of Saharan-Dust
Optical Depth over Africa, J. Appl. Meteorol., 28, 309–318,
https://doi.org/10.1175/1520-0450(1989)028<0309:TPOISD>2.0.CO;2, 1989.
Legrand, M., Plana-Fattori, A., and N'Doumé, C.: Satellite detection of
dust using the IR imagery of Meteosat 1. Infrared difference dust index, J.
Geophys. Res.-Atmos., 106, 18251–18274, https://doi.org/10.1029/2000JD900749,
2001.
Lensky, I. M. and Rosenfeld, D.: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT), Atmos. Chem. Phys., 8, 6739–6753, https://doi.org/10.5194/acp-8-6739-2008, 2008.
LeRoy, A., Fuell, K., Molthan, A., Jedlovec, G., Forsythe, J., Kidder, S.,
and Jones, A.: The operational use and assessment of a layered precipitable
water product for weather forecasting, J. Oper. Meteorol., 4, 22–33,
https://doi.org/10.15191/nwajom.2016.0402, 2016.
Liu, Z., Omar, A. H., Hu, Y., Vaughan, M. A., and Winker, D. M.: CALIOP
Algorithm Theoretical Basis Document. Part 3: Scene classification
algorithms, 1–56, available at:
https://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part3_v1.0.pdf (last access: 10 February 2021), 2005.
Lu, C.-H., da Silva, A., Wang, J., Moorthi, S., Chin, M., Colarco, P., Tang, Y., Bhattacharjee, P. S., Chen, S.-P., Chuang, H.-Y., Juang, H.-M. H., McQueen, J., and Iredell, M.: The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP, Geosci. Model Dev., 9, 1905–1919, https://doi.org/10.5194/gmd-9-1905-2016, 2016.
Lu, S., Wei, S., Kondragunta, S., Zhao, Q., Mcqueen, J., Wang, J., and
Bhattacharjee, P.: NCEP Aerosol Data Assimilation Update: Improving NCEP
global aerosol forecasts using JPSS-NPP VIIRS aerosol products, in: ICAP
Working Group Meeting, College Park, MD, 1–31, 2016b.
Lynch, P., Reid, J. S., Westphal, D. L., Zhang, J., Hogan, T. F., Hyer, E. J., Curtis, C. A., Hegg, D. A., Shi, Y., Campbell, J. R., Rubin, J. I., Sessions, W. R., Turk, F. J., and Walker, A. L.: An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences, Geosci. Model Dev., 9, 1489–1522, https://doi.org/10.5194/gmd-9-1489-2016, 2016.
Miller, S. D.: A consolidated technique for enhancing desert dust storms
with MODIS, Geophys. Res. Lett., 30, 2071, https://doi.org/10.1029/2003GL018279, 2003.
Miller, S. D., Mills, S. P., Elvidge, C. D., Lindsey, D. T., Lee, T. F., and
Hawkins, J. D.: Suomi satellite brings to light a unique frontier of
nighttime environmental sensing capabilities, P. Natl. Acad. Sci. USA, 109, 15706–15711, https://doi.org/10.1073/pnas.1207034109, 2012.
Miller, S. D., Straka, W., Mills, S. P., Elvidge, C. D., Lee, T. F.,
Solbrig, J., Walther, A., Heidinger, A. K., and Weiss, S. C.: Illuminating
the capabilities of the suomi national Polar-orbiting partnership (NPP)
visible infrared imaging radiometer suite (VIIRS) day/night Band, Remote
Sens., 5, 6717–6766, https://doi.org/10.3390/rs5126717, 2013.
Miller, S. D., Schmit, T. L., Seaman, C. J., Lindsey, D. T., Gunshor, M. M.,
Kohrs, R. A., Sumida, Y., and Hillger, D.: A sight for sore eyes: The return
of true color to geostationary satellites, B. Am. Meteorol. Soc., 97,
1803–1816, https://doi.org/10.1175/BAMS-D-15-00154.1, 2016.
Miller, S. D., Bankert, R. L., Solbrig, J. E., Forsythe, J. M., Noh, Y.-J.,
and Grasso, L. D.: A Dynamic Enhancement With Background Reduction
Algorithm: Overview and Application to Satellite-Based Dust Storm Detection,
J. Geophys. Res.-Atmos., 122, 938–959, https://doi.org/10.1002/2017JD027365, 2017.
Miller, S. D., Grasso, L. D., Bian, Q., Kreidenweis, S. M., Dostalek, J. F., Solbrig, J. E., Bukowski, J., van den Heever, S. C., Wang, Y., Xu, X., Wang, J., Walker, A. L., Wu, T.-C., Zupanski, M., Chiu, C., and Reid, J. S.: A Tale of Two Dust Storms: analysis of a complex dust event in the Middle East, Atmos. Meas. Tech., 12, 5101–5118, https://doi.org/10.5194/amt-12-5101-2019, 2019.
Miller, S. D., Lindsey, D. T., Seaman, C. J., and Solbrig, J. E.: Geocolor: A
blending technique for satellite imagery, J. Atmos. Ocean. Tech., 37,
429–448, https://doi.org/10.1175/JTECH-D-19-0134.1, 2020.
Morcrette, J. J., Beljaars, A., Benedetti, A., Jones, L., and Boucher, O.:
Sea-salt and dust aerosols in the ECMWF IFS model, Geophys. Res. Lett., 35, L24813, https://doi.org/10.1029/2008GL036041, 2008.
Nalli, N. R., Barnet, C. D., Reale, T., Liu, Q., Morris, V. R., Spackman, J.
R., Joseph, E., Tan, C., Sun, B., Tilley, F., Ruby Leung, L., and Wolfe, D.:
Satellite sounder observations of contrasting tropospheric moisture
transport regimes: Saharan air layers, hadley cells, and atmospheric rivers,
J. Hydrometeorol., 17, 2997–3006, https://doi.org/10.1175/JHM-D-16-0163.1, 2016.
NOAA: Comprehensive Large Array-data Stewardship System (CLASS), available at: https://www.class.noaa.gov, last access: 15 March 2020.
Pagowski, M., Liu, Z., Grell, G. A., Hu, M., Lin, H.-C., and Schwartz, C. S.: Implementation of aerosol assimilation in Gridpoint Statistical Interpolation (v. 3.2) and WRF-Chem (v. 3.4.1), Geosci. Model Dev., 7, 1621–1627, https://doi.org/10.5194/gmd-7-1621-2014, 2014.
Pierangelo, C., Chédin, A., Heilliette, S., Jacquinet-Husson, N., and Armante, R.: Dust altitude and infrared optical depth from AIRS, Atmos. Chem. Phys., 4, 1813–1822, https://doi.org/10.5194/acp-4-1813-2004, 2004.
Prospero, J. M. and Carlson, T. N.: Vertical and areal distribution of
Saharan dust over the western equatorial north Atlantic Ocean, J. Geophys.
Res., 77, 5255–5265, https://doi.org/10.1029/JC077i027p05255, 1972.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka,
Y., and Flynn, C. J.: The MERRA-2 aerosol reanalysis, 1980 onward. Part I:
Description and Data assimilation Evaluation, J. Climate, 30, 6823–6850,
https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.
Rubin, J. I., Reid, J. S., Hansen, J. A., Anderson, J. L., Holben, B. N.,
Xian, P., Westphal, D. L., and Zhang, J.: Assimilation of AERONET and MODIS
AOT observations using variational and ensemble data assimilation methods
and its impact on aerosol forecasting skill, J. Geophys. Res., 122,
4967–4992, https://doi.org/10.1002/2016JD026067, 2017.
Schlueter, A., Fink, A. H., and Knippertz, P.: A systematic comparison of
tropical waves over Northern Africa. Part II: Dynamics and thermodynamics,
J. Climate, 32, 2605–2625, https://doi.org/10.1175/JCLI-D-18-0651.1, 2019.
Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S. and
Ratier, A.: An Introduction to Meteosat Second Generation (MSG), B. Am.
Meteorol. Soc., 83, 977–992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2, 2002.
Schmit, T. J., Li, J., Gurka, J. J., Goldberg, M. D., Schrab, K. J., Li, J.,
and Feltz, W. F.: The GOES-R advanced baseline imager and the continuation
of current sounder products, J. Appl. Meteorol. Climatol., 47,
2696–2711, https://doi.org/10.1175/2008JAMC1858.1, 2008.
Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J.,
and Lebair, W. J.: A closer look at the ABI on the goes-r series, B. Am.
Meteorol. Soc., 98, 681–698, https://doi.org/10.1175/BAMS-D-15-00230.1, 2017.
Schmit, T. J., Lindstrom, S. S., Gerth, J. J., and Gunshor, M. M.:
Applications of the 16 spectral bands on the Advanced Baseline Imager
(ABI)., J. Oper. Meteorol., 06(04), 33–46, https://doi.org/10.15191/nwajom.2018.0604,
2018.
Shenk, W. E. and Curran, R. J.: The Detection of Dust Storms Over Land and
Water With Satellite Visible and Infrared Measurements, Mon. Weather Rev.,
102, 830–837, https://doi.org/10.1175/1520-0493(1974)102<0830:tdodso>2.0.co;2, 1974.
Shimizu, A.: Introduction of JMA VLab Support Site on RGB Composite
Imagery and tentative RGBs, The 6th Asia/Oceania Meteorological Satellite
Users' Conference, Tokyo, Japan, 9–13 November 2015, available at:
http://www.data.jma.go.jp/mscweb/en/aomsuc6_data/presentations.html (last access: 10 February 2021), 2015.
Tanaka, T. Y. and Chiba, M.: Global simulation of dust aerosol with a
chemical transport model, MASINGAR, J. Meteorol. Soc. Jpn., 83,
255–278, https://doi.org/10.2151/jmsj.83a.255, 2005.
Tanre, D. and Legrand, M.: On the satellite retrieval of Saharan dust
optical thickness over land: two different approaches, J. Geophys. Res.,
96, 5221–5227, https://doi.org/10.1029/90JD02607, 1991.
Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., and Gleason, J.:
Derivation of aerosol properties from satellite measurements of
backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res.-Atmos., 103, 17099–17110, https://doi.org/10.1029/98JD02709, 1998.
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P.
K., Veefkind, P., and Levelt, P.: Aerosols and surface UV products form Ozone
Monitoring Instrument observations: An overview, J. Geophys. Res.-Atmos.,
112, D24S47, https://doi.org/10.1029/2007JD008809, 2007.
Wang, H. and Niu, T.: Sensitivity studies of aerosol data assimilation and
direct radiative feedbacks in modeling dust aerosols, Atmos. Environ., 64,
208–218, https://doi.org/10.1016/j.atmosenv.2012.09.066, 2013.
Wang, J., Christopher, S. A., Brechtel, F., Kim, J., Schmid, B., Redemann,
J., Russell, P. B., Quinn, P., and Holben, B. N.: Geostationary satellite
retrievals of aerosol optical thickness during ACE-Asia, J. Geophys. Res.,
108, 8657, https://doi.org/10.1029/2003JD003580, 2003.
Weaver, C., da Silva, A., Chin, M., Ginoux, P., Dubovik, O., Flittner, D.,
Zia, A., Remer, L., Holben, B., and Gregg, W.: Direct Insertion of MODIS
Radiances in a Global Aerosol Transport Model, J. Atmos. Sci., 64,
808–827, https://doi.org/10.1175/JAS3838.1, 2007.
Weaver, G. M., Smith, N., Berndt, E. B., While, K. D., Dostalek, J. F., and
Zavodsky, B. T.: Addressing the Cold Air Aloft Aviation Challenge with
Satellite Sounding Observations, J. Oper. Meteorol., 7, 138–152,
https://doi.org/10.15191/nwajom.2019.0710, 2019.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP
data processing algorithms, J. Atmos. Ocean. Tech., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Xian, P., Reid, J. S., Hyer, E. J., Sampson, C. R., Rubin, J. I., Asencio,
N., Basart, S., Benedetti, A., Bhattacharjee, P., Malcolm, E., Colarco, P.
R., Silva, D., Eck, T. F., Guth, J., Jorba, O., Tanaka, T., Wang, J.,
Westphal, D. L., and Yumimoto, K.: Current State of the global operational
aerosol multi-model ensemble: an update from the International Cooperative
for Aerosol Prediction (ICAP), Q. J. R. Meteorol. Soc., 176–209,
https://doi.org/10.1002/qj.3497, 2019.
Yumimoto, K., Tanaka, T. Y., Yoshida, M., Kikuchi, M., Nagao, T. M.,
Murakami, H., and Maki, T.: Assimilation and forecasting experiment for heavy
siberian wildfire smoke in may 2016 with himawari-8 aerosol optical
thickness, J. Meteorol. Soc. Jpn., 96B, 133, https://doi.org/10.2151/jmsj.2018-035, 2018.
Zhang, J., Campbell, J. R., Hyer, E. J. E. J., Reid, J. S., Westphal, D. L.,
and Johnson, R. S.: Evaluating the impact of multisensor data assimilation
on a global aerosol particle transport model, J. Geophys. Res.-Atmos.,
119, 4674–4689, https://doi.org/10.1002/2013JD020975, 2014.
Zhao, T. X. P., Ackerman, S., and Guo, W.: Dust and smoke detection for
multi-channel imagers, Remote Sens., 2, 2347–2368, https://doi.org/10.3390/rs2102347,
2010.
Short summary
This study uses geostationary imagery to detect dust. This research was done to demonstrate the ability of dust detection over ocean surfaces in a dry atmosphere.
This study uses geostationary imagery to detect dust. This research was done to demonstrate the...