Articles | Volume 14, issue 5
https://doi.org/10.5194/amt-14-3573-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-3573-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The design and development of a tuneable and portable radiation source for in situ spectrometer characterisation
Marek Šmíd
CORRESPONDING AUTHOR
Czech Metrology Institute, Brno, 638 00, Czech Republic
Geiland Porrovecchio
Czech Metrology Institute, Brno, 638 00, Czech Republic
Jiří Tesař
Czech Metrology Institute, Brno, 638 00, Czech Republic
Tim Burnitt
Principal Optics, Woodley, Berkshire, RG5 4PZ, UK
Luca Egli
Physikalisch-Meteorologisches Observatorium Davos/World Radiation
Centre, Davos, 7260, Switzerland
Julian Grőbner
Physikalisch-Meteorologisches Observatorium Davos/World Radiation
Centre, Davos, 7260, Switzerland
Petr Linduška
Czech Metrology Institute, Brno, 638 00, Czech Republic
Martin Staněk
Czech Hydrometeorological Institute, Hradec Kralove, 503 11, Czech
Republic
Related authors
Ulf Köhler, Saulius Nevas, Glen McConville, Robert Evans, Marek Smid, Martin Stanek, Alberto Redondas, and Fritz Schönenborn
Atmos. Meas. Tech., 11, 1989–1999, https://doi.org/10.5194/amt-11-1989-2018, https://doi.org/10.5194/amt-11-1989-2018, 2018
Short summary
Short summary
Laboratory investigations of optical characteristics of three standard Dobsons provide real wavelength settings and slit functions. These parameters were compared with the original values given in the manuals. The differences between real and nominal values are not too large, but their application will in any case improve the quality of the total ozone column measurements in the global
network. This improvement was the main objective of the ATMOZ project funding these activities.
Ilias Fountoulakis, Kyriaki Papachristopoulou, Stelios Kazadzis, Gregor Hülsen, Julian Gröbner, Ioannis-Panagiotis Raptis, Dimitra Kouklaki, Akriti Masoom, Charalampos Kontoes, and Christos S. Zerefos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2964, https://doi.org/10.5194/egusphere-2024-2964, 2024
Short summary
Short summary
The UVIOS2 model has been evaluated at Davos, Switzerland during the UVCIII campaign. The accuracy in the modelled UV indices has been assessed for different combinations of model inputs. A good overall agreement between UVIOS2 and the world reference spectroradiometer QASUME was found (average ratio of ~1 between the modelled and measured UV index), although the variability in the ratio can be large under cloudy conditions.
Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, and Stefano Casadio
Atmos. Meas. Tech., 17, 5029–5050, https://doi.org/10.5194/amt-17-5029-2024, https://doi.org/10.5194/amt-17-5029-2024, 2024
Short summary
Short summary
To retrieve columnar aerosol properties from sun photometers, some calibration factors are needed. The on-site calibrations, performed as frequently as possible to monitor changes in the machine conditions, allow operators to track and evaluate the calibration status on a continuous basis, reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures was evaluated, providing very good results.
Karl Voglmeier, Voltaire A. Velazco, Luca Egli, Julian Gröbner, Alberto Redondas, and Wolfgang Steinbrecht
Atmos. Meas. Tech., 17, 2277–2294, https://doi.org/10.5194/amt-17-2277-2024, https://doi.org/10.5194/amt-17-2277-2024, 2024
Short summary
Short summary
Comparison between total ozone column (TOC) measurements from ground-based Dobson and Brewer spectrophotometers generally reveals seasonally varying differences of a few percent. This study recommends a new TOC retrieval approach, which effectively eliminates these seasonally varying differences by applying new ozone absorption cross sections, appropriate slit functions for the Dobson instrument, and climatological values for the effective ozone temperature.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Óscar Alvárez, África Barreto, Omaira E. García, Frank Hase, Rosa D. García, Julian Gröbner, Sergio F. León-Luis, Eliezer Sepúlveda, Virgilio Carreño, Antonio Alcántara, Ramón Ramos, A. Fernando Almansa, Stelios Kazadzis, Noémie Taquet, Carlos Toledano, and Emilio Cuevas
Atmos. Meas. Tech., 16, 4861–4884, https://doi.org/10.5194/amt-16-4861-2023, https://doi.org/10.5194/amt-16-4861-2023, 2023
Short summary
Short summary
In this work, we have extended the capabilities of a portable Fourier transform infrared (FTIR) instrument, which was originally designed to provide high-quality greenhouse gas monitoring within COCCON (COllaborative Carbon Column Observing Network). The extension allows the spectrometer to now also provide coincidentally column-integrated aerosol information. This addition of a reference instrument to a global network will be utilised to enhance our understanding of atmospheric chemistry.
Verena Schenzinger, Axel Kreuter, Barbara Klotz, Michael Schwarzmann, and Julian Gröbner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-188, https://doi.org/10.5194/amt-2023-188, 2023
Revised manuscript not accepted
Short summary
Short summary
We present a fast an easy method to incorporate clouds from satellite imagery into a model for calculating surface UV index maps in near-real time. To judge the quality of the model, we compare our results to measurements from ground based detectors. We discuss in detail where variations in either of the values come from and why satellite and ground values might not necessarily be comparable in every situation.
Julian Gröbner, Natalia Kouremeti, Gregor Hülsen, Ralf Zuber, Mario Ribnitzky, Saulius Nevas, Peter Sperfeld, Kerstin Schwind, Philipp Schneider, Stelios Kazadzis, África Barreto, Tom Gardiner, Kavitha Mottungan, David Medland, and Marc Coleman
Atmos. Meas. Tech., 16, 4667–4680, https://doi.org/10.5194/amt-16-4667-2023, https://doi.org/10.5194/amt-16-4667-2023, 2023
Short summary
Short summary
Spectral solar irradiance measurements traceable to the International System of Units (SI) allow for intercomparability between instruments and for their validation according to metrological standards. Here we also validate and reduce the uncertainties of the top-of-atmosphere TSIS-1 Hybrid Solar Reference Spectrum (HSRS). The management of large networks, e.g. AERONET or GAW-PFR, will benefit from reducing logistical overhead, improving their resilience and achieving metrological traceability.
Luca Egli, Julian Gröbner, Herbert Schill, and Eliane Maillard Barras
Atmos. Meas. Tech., 16, 2889–2902, https://doi.org/10.5194/amt-16-2889-2023, https://doi.org/10.5194/amt-16-2889-2023, 2023
Short summary
Short summary
This paper introduces a new method to retrieve total column ozone with spectral ground-based measurements from a novel array spectroradiometer. Total column ozone estimates using the small, cost-effective, and robust instrument and the new retrieval method are compared with other co-located total column ozone instruments. The comparison shows that the new system performs similarly to other well-established instruments, which require substantially more maintenance than the system introduced here.
Xiaoyi Zhao, Vitali Fioletov, Alberto Redondas, Julian Gröbner, Luca Egli, Franz Zeilinger, Javier López-Solano, Alberto Berjón Arroyo, James Kerr, Eliane Maillard Barras, Herman Smit, Michael Brohart, Reno Sit, Akira Ogyu, Ihab Abboud, and Sum Chi Lee
Atmos. Meas. Tech., 16, 2273–2295, https://doi.org/10.5194/amt-16-2273-2023, https://doi.org/10.5194/amt-16-2273-2023, 2023
Short summary
Short summary
The Brewer ozone spectrophotometer is one of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW)'s standard ozone monitoring instruments since the 1980s. This work is aimed at obtaining answers to (1) why Brewer primary calibration work can only be performed at certain sites (e.g., Izaña and MLO) and (2) what is needed to assure the equivalence of calibration quality from different sites.
Klára Čížková, Kamil Láska, Ladislav Metelka, and Martin Staněk
Atmos. Chem. Phys., 23, 4617–4636, https://doi.org/10.5194/acp-23-4617-2023, https://doi.org/10.5194/acp-23-4617-2023, 2023
Short summary
Short summary
The study deals with ultraviolet (UV) radiation in southern polar conditions, where ozone depletion occurs each spring. A 10-year-long time series of UV spectra from Marambio Base, Antarctic Peninsula, has been studied, with a focus on the changes of UV radiation at different wavelengths and the effects of atmospheric and terrestrial variables like ozone, solar elevation, or cloudiness. At the very short wavelengths, the effect of ozone and its deficiency was clearly observed.
Bruce W. Forgan, Julian Gröbner, and Ibrahim Reda
Atmos. Meas. Tech., 16, 727–743, https://doi.org/10.5194/amt-16-727-2023, https://doi.org/10.5194/amt-16-727-2023, 2023
Short summary
Short summary
This paper investigates the Absolute Cavity Pyrgeometer (ACP) and its use in measuring atmospheric terrestrial irradiances traceable to the standard system of units (SI). This work fits into the objective of the Expert Team on Radiation References, established by the World Meteorological Organization (WMO), to develop and validate instrumentation that can be used as reference instruments for terrestrial radiation measurements.
Eliane Maillard Barras, Alexander Haefele, René Stübi, Achille Jouberton, Herbert Schill, Irina Petropavlovskikh, Koji Miyagawa, Martin Stanek, and Lucien Froidevaux
Atmos. Chem. Phys., 22, 14283–14302, https://doi.org/10.5194/acp-22-14283-2022, https://doi.org/10.5194/acp-22-14283-2022, 2022
Short summary
Short summary
Intercomparisons of three Dobson and three Brewer spectrophotometers at Arosa/Davos, Switzerland, are used for the homogenization of the longest Umkehr ozone profiles time series worldwide. Dynamic linear modeling (DLM) reveals a significant positive trend after 2004 in the upper stratosphere, a persistent negative trend between 25 and 30 km in the middle stratosphere, and a negative trend at 20 km in the lower stratosphere, with different levels of significance depending on the dataset.
Angelos Karanikolas, Natalia Kouremeti, Julian Gröbner, Luca Egli, and Stelios Kazadzis
Atmos. Meas. Tech., 15, 5667–5680, https://doi.org/10.5194/amt-15-5667-2022, https://doi.org/10.5194/amt-15-5667-2022, 2022
Short summary
Short summary
The aim of this work is to investigate the limitations of calculating long-term trends of a parameter that quantifies the overall effect of atmospheric aerosols on the solar radiation. A main finding is that even instruments with good agreement between their observations can show significantly different linear trends. By calculating time-varying trends, the trend agreement is shown to improve. We also show that different methods of trend estimation can result in significant trend differences.
Luca Egli, Julian Gröbner, Gregor Hülsen, Herbert Schill, and René Stübi
Atmos. Meas. Tech., 15, 1917–1930, https://doi.org/10.5194/amt-15-1917-2022, https://doi.org/10.5194/amt-15-1917-2022, 2022
Short summary
Short summary
This study presents traceable total column ozone retrievals from direct solar spectral irradiance measurements. The retrieved ozone does not require any field calibration with a reference instrument as it is required for other operational network instruments such as Brewer or Dobson. Total column ozone can be retrieved with a traceable overall standard uncertainty of less than 0.8 % indicating a benchmark uncertainty for total column ozone measurements.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
Ralf Zuber, Ulf Köhler, Luca Egli, Mario Ribnitzky, Wolfgang Steinbrecht, and Julian Gröbner
Atmos. Meas. Tech., 14, 4915–4928, https://doi.org/10.5194/amt-14-4915-2021, https://doi.org/10.5194/amt-14-4915-2021, 2021
Short summary
Short summary
We validated two BTS-based systems in a longer-term TOC analysis in the 2019/2020 campaign at Hohenpeißenberg and Davos. The results showed a deviation of the BTS-Solar to Brewers of < 0.1 % with a k = 2 of < 1.5 %. Koherent showed a deviation of 1.7 % with a k = 2 of 2.7 %. Resultingly, the BTS-Solar performance is comparable to Brewers in Hohenpeißenberg. Koherent shows a seasonal variation in Davos due to the sensitivity of its TOC retrieval algorithm to stratospheric temperature.
Julian Gröbner, Herbert Schill, Luca Egli, and René Stübi
Atmos. Meas. Tech., 14, 3319–3331, https://doi.org/10.5194/amt-14-3319-2021, https://doi.org/10.5194/amt-14-3319-2021, 2021
Short summary
Short summary
The world's longest continuous total column ozone time series was initiated in 1926 at the Lichtklimatisches Observatorium (LKO), at Arosa, in the Swiss Alps. The measurements between Dobson and Brewer spectroradiometers have shown seasonal variations of the order of 2 %. The results of the study show that the consistency between the two instrument types can be significantly improved when the ozone cross-sections from Serdyuchenko et al. (2013) and the measured slit functions are used.
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020, https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Short summary
The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. Ground-based data from 25 sites located in Arctic, subarctic, temperate, equatorial and Antarctic
areas were used for the validation of the TROPOMI surface ultraviolet (UV) radiation product. For most sites 60 %–80 % of TROPOMI data was within ± 20 % of ground-based data.
Ilias Fountoulakis, Henri Diémoz, Anna Maria Siani, Gregor Hülsen, and Julian Gröbner
Earth Syst. Sci. Data, 12, 2787–2810, https://doi.org/10.5194/essd-12-2787-2020, https://doi.org/10.5194/essd-12-2787-2020, 2020
Short summary
Short summary
In this study we discuss the procedures and the technical aspects which ensure the high quality of the measurements of the global solar ultraviolet (UV) irradiance performed by a Bentham spectroradiometer located at Aosta–Saint-Christophe (north-western Alps), Italy. This particular instrument is the reference for the Aosta Valley UV monitoring network, which is the first UV monitoring network in Italy. The final spectra constitute one of the most accurate datasets globally.
Christine Aebi, Julian Gröbner, Stelios Kazadzis, Laurent Vuilleumier, Antonis Gkikas, and Niklaus Kämpfer
Atmos. Meas. Tech., 13, 907–923, https://doi.org/10.5194/amt-13-907-2020, https://doi.org/10.5194/amt-13-907-2020, 2020
Short summary
Short summary
Clouds are one of the largest sources of uncertainties in climate models. The current study estimates the cloud optical thickness (COT), the effective droplet radius and the single scattering albedo of stratus–altostratus and cirrus–cirrostratus clouds in Payerne, Switzerland, by combining ground- and satellite-based measurements and radiative transfer models. The estimated values are thereafter compared with data retrieved from other methods. The mean COT is distinct for different seasons.
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019, https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Short summary
The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a. s. l.) in Switzerland for the 1996–2015 period. Trends in DSR and DLR were positive during cloudy as well as clear conditions. The trend due to the influence of clouds decreased in magnitude, which implies a reduction in cloud cover and/or a change towards a different cloud type over the four Swiss sites.
Emilio Cuevas, Pedro Miguel Romero-Campos, Natalia Kouremeti, Stelios Kazadzis, Petri Räisänen, Rosa Delia García, Africa Barreto, Carmen Guirado-Fuentes, Ramón Ramos, Carlos Toledano, Fernando Almansa, and Julian Gröbner
Atmos. Meas. Tech., 12, 4309–4337, https://doi.org/10.5194/amt-12-4309-2019, https://doi.org/10.5194/amt-12-4309-2019, 2019
Short summary
Short summary
A comprehensive comparison of more than 70 000 synchronous 1 min aerosol optical depth (AOD) data from 3 Global Atmosphere Watch precision filter radiometers (GAW-PFR) and 15 Aerosol Robotic Network Cimel radiometers (AERONET-Cimel) was performed for the four
nearwavelengths (380, 440, 500 and 870 nm) in the period 2005–2015. The goal of this study is to assess whether their long term AOD data are comparable and consistent.
Christine Aebi, Julian Gröbner, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5549–5563, https://doi.org/10.5194/amt-11-5549-2018, https://doi.org/10.5194/amt-11-5549-2018, 2018
Short summary
Short summary
A newly developed hemispherical thermal infrared cloud camera (IRCCAM) is presented. The IRCCAM allows automatic cloud detection during the day and at night-time. The cloud fraction determined from the IRCCAM is compared with the cloud fraction determined from other instruments over a time period of 2 years. The IRCCAM has an agreement of +/- 2 oktas cloud fraction in 90 % of the data compared to other instruments. There are no significant differences between seasons or different times of day.
Carlos Toledano, Ramiro González, David Fuertes, Emilio Cuevas, Thomas F. Eck, Stelios Kazadzis, Natalia Kouremeti, Julian Gröbner, Philippe Goloub, Luc Blarel, Roberto Román, África Barreto, Alberto Berjón, Brent N. Holben, and Victoria E. Cachorro
Atmos. Chem. Phys., 18, 14555–14567, https://doi.org/10.5194/acp-18-14555-2018, https://doi.org/10.5194/acp-18-14555-2018, 2018
Short summary
Short summary
Most of the ground-based radiometric networks have their reference instruments and/or calibrate them at Mauna Loa or Izaña. The suitability of these high-mountain stations for absolute radiometric calibrations is investigated with the support of 20 years of first-class Sun photometer data from the AERONET and GAW-PFR networks. We analyze the number of calibration days at each site in a climatological sense and investigate the uncertainty of the calibrations based on long-term statistics.
Kaisa Lakkala, Antti Arola, Julian Gröbner, Sergio Fabian León-Luis, Alberto Redondas, Stelios Kazadzis, Tomi Karppinen, Juha Matti Karhu, Luca Egli, Anu Heikkilä, Tapani Koskela, Antonio Serrano, and José Manuel Vilaplana
Atmos. Meas. Tech., 11, 5167–5180, https://doi.org/10.5194/amt-11-5167-2018, https://doi.org/10.5194/amt-11-5167-2018, 2018
Short summary
Short summary
The performance of the cosine error correction method for correcting spectral UV measurements of the Brewer spectroradiometer was studied. The correction depends on the sky radiation distribution, which can change during one spectral scan. The results showed that the correction varied between 4 and 14 %, and that the relative differences between the reference and the Brewer diminished by 10 %. The method is applicable to other instruments as long as the required input parameters are available.
Alberto Redondas, Virgilio Carreño, Sergio F. León-Luis, Bentorey Hernández-Cruz, Javier López-Solano, Juan J. Rodriguez-Franco, José M. Vilaplana, Julian Gröbner, John Rimmer, Alkiviadis F. Bais, Vladimir Savastiouk, Juan R. Moreta, Lamine Boulkelia, Nis Jepsen, Keith M. Wilson, Vadim Shirotov, and Tomi Karppinen
Atmos. Chem. Phys., 18, 9441–9455, https://doi.org/10.5194/acp-18-9441-2018, https://doi.org/10.5194/acp-18-9441-2018, 2018
Short summary
Short summary
This work shows an overview of the total ozone comparison of the Brewer instrument during the 10th RBCC-E campaign in a joint effort with the EUBREWNET COST 1207 action. The status of the network after 2 years of calibration shows 16 out of the 21 participating Brewer instruments (76 %) agreed within better than ±1 %, and 10 instruments (50 %) agreed within better than ±0.5 %. After applying the final calibration and the stray light correction all working instruments agreed at the ±0.5 % level.
Anna Vaskuri, Petri Kärhä, Luca Egli, Julian Gröbner, and Erkki Ikonen
Atmos. Meas. Tech., 11, 3595–3610, https://doi.org/10.5194/amt-11-3595-2018, https://doi.org/10.5194/amt-11-3595-2018, 2018
Short summary
Short summary
In this work, we introduce a Monte Carlo uncertainty analysis that takes into account possible systematic spectral deviations in the atmospheric full spectrum ozone retrieval method. Accounting for possible systematic spectral deviations in the spectral data is important since they produce larger total ozone column uncertainties than uncorrelated noise-like variations that traditional uncertainty estimations predict.
Rosa Delia García, Africa Barreto, Emilio Cuevas, Julian Gröbner, Omaira Elena García, Angel Gómez-Peláez, Pedro Miguel Romero-Campos, Alberto Redondas, Victoria Eugenia Cachorro, and Ramon Ramos
Geosci. Model Dev., 11, 2139–2152, https://doi.org/10.5194/gmd-11-2139-2018, https://doi.org/10.5194/gmd-11-2139-2018, 2018
Short summary
Short summary
A 7-year comparison study between measured and simulated longwave
downward radiation under cloud-free conditions has been performed at BSRN Izaña. Results show an excellent agreement with a mean bias (simulated–measured) less than 1.1 % and RMSE less than 1 %, which are within the instrumental error (2 %).
Ulf Köhler, Saulius Nevas, Glen McConville, Robert Evans, Marek Smid, Martin Stanek, Alberto Redondas, and Fritz Schönenborn
Atmos. Meas. Tech., 11, 1989–1999, https://doi.org/10.5194/amt-11-1989-2018, https://doi.org/10.5194/amt-11-1989-2018, 2018
Short summary
Short summary
Laboratory investigations of optical characteristics of three standard Dobsons provide real wavelength settings and slit functions. These parameters were compared with the original values given in the manuals. The differences between real and nominal values are not too large, but their application will in any case improve the quality of the total ozone column measurements in the global
network. This improvement was the main objective of the ATMOZ project funding these activities.
Daniela Meloni, Alcide di Sarra, Gérard Brogniez, Cyrielle Denjean, Lorenzo De Silvestri, Tatiana Di Iorio, Paola Formenti, José L. Gómez-Amo, Julian Gröbner, Natalia Kouremeti, Giuliano Liuzzi, Marc Mallet, Giandomenico Pace, and Damiano M. Sferlazzo
Atmos. Chem. Phys., 18, 4377–4401, https://doi.org/10.5194/acp-18-4377-2018, https://doi.org/10.5194/acp-18-4377-2018, 2018
Short summary
Short summary
This study examines how different aerosol optical properties determine the dust longwave radiative effects at the surface, in the atmosphere and at the top of the atmosphere, based on the combination of remote sensing and in situ observations from the ground, from airborne sensors, and from space, by means of radiative transfer modelling. The closure experiment is based on longwave irradiances and spectral brightness temperatures measured during the 2013 ChArMEx–ADRIMED campaign at Lampedusa.
Christof Janssen, Hadj Elandaloussi, and Julian Gröbner
Atmos. Meas. Tech., 11, 1707–1723, https://doi.org/10.5194/amt-11-1707-2018, https://doi.org/10.5194/amt-11-1707-2018, 2018
Short summary
Short summary
Monitoring ozone layer recovery at a rate of few percent per decade requires dedicated instrumentation and spectroscopic data of the highest quality. Highly accurate absorption cross sections of ozone are rare, especially in the important UV region between 300 and 340 nm. Our measurement provides the first reference point with permil level of accuracy in this range. Interestingly, our value is lower than currently used data. This might resolve an inconsistency between UV and IR measurements.
Javier López-Solano, Alberto Redondas, Thomas Carlund, Juan J. Rodriguez-Franco, Henri Diémoz, Sergio F. León-Luis, Bentorey Hernández-Cruz, Carmen Guirado-Fuentes, Natalia Kouremeti, Julian Gröbner, Stelios Kazadzis, Virgilio Carreño, Alberto Berjón, Daniel Santana-Díaz, Manuel Rodríguez-Valido, Veerle De Bock, Juan R. Moreta, John Rimmer, Andrew R. D. Smedley, Lamine Boulkelia, Nis Jepsen, Paul Eriksen, Alkiviadis F. Bais, Vadim Shirotov, José M. Vilaplana, Keith M. Wilson, and Tomi Karppinen
Atmos. Chem. Phys., 18, 3885–3902, https://doi.org/10.5194/acp-18-3885-2018, https://doi.org/10.5194/acp-18-3885-2018, 2018
Short summary
Short summary
The European Brewer Network (EUBREWNET, COST Action ES1207) is comprised of close to 50 instruments and currently provides near-real-time ozone and UV data. Aerosols also play key role in the Earth–atmosphere system and introduce a large uncertainty into our understanding of climate change. In this work we describe and validate a method to incorporate the measurement of aerosols in EUBREWNET. We find that this Brewer network can provide reliable aerosol data across Europe in the UV range.
Stelios Kazadzis, Natalia Kouremeti, Henri Diémoz, Julian Gröbner, Bruce W. Forgan, Monica Campanelli, Victor Estellés, Kathleen Lantz, Joseph Michalsky, Thomas Carlund, Emilio Cuevas, Carlos Toledano, Ralf Becker, Stephan Nyeki, Panagiotis G. Kosmopoulos, Viktar Tatsiankou, Laurent Vuilleumier, Frederick M. Denn, Nozomu Ohkawara, Osamu Ijima, Philippe Goloub, Panagiotis I. Raptis, Michael Milner, Klaus Behrens, Africa Barreto, Giovanni Martucci, Emiel Hall, James Wendell, Bryan E. Fabbri, and Christoph Wehrli
Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, https://doi.org/10.5194/acp-18-3185-2018, 2018
Short summary
Short summary
Aerosol optical depth measured from ground-based sun photometers is the most important parameter for studying the changes in the Earth's radiation balance due to aerosols. Representatives for various sun photometer types belonging to individual institutions or international aerosol networks gather every 5 years, for 3 weeks, in Davos, Switzerland, in order to compare their aeorosol optical depth retrievals. This work presents the results of the latest (fourth) filter radiometer intercomparison.
Panagiotis-Ioannis Raptis, Stelios Kazadzis, Julian Gröbner, Natalia Kouremeti, Lionel Doppler, Ralf Becker, and Constantinos Helmis
Atmos. Meas. Tech., 11, 1143–1157, https://doi.org/10.5194/amt-11-1143-2018, https://doi.org/10.5194/amt-11-1143-2018, 2018
Short summary
Short summary
The purpose of this work is to retrieve integrated water vapour using spectral measurements from Precision Solar Spectroradiometer (PSR). Two different approaches were developed one using single-channel direct sun irradiance measurements, and the second one integrating at a certain spectral region. The results of the spectral approach are closer to the retrievals of non-photometric techniques (GPS, microwave radiometer and radiosondes), suggesting this method provide more accurate IWV product.
Klára Čížková, Kamil Láska, Ladislav Metelka, and Martin Staněk
Atmos. Chem. Phys., 18, 1805–1818, https://doi.org/10.5194/acp-18-1805-2018, https://doi.org/10.5194/acp-18-1805-2018, 2018
Short summary
Short summary
In order to broaden the knowledge of long-term UV radiation variability, we have reconstructed and analyzed a 50-year-long UV radiation time series from Hradec Králové, Czech Republic. The UV radiation intensities increased greatly following the decline of ozone amounts in the 1980s and 1990s. High UV radiation doses were observed in days with low ozone amounts, clear or partly cloudy skies, or snow cover.
Stelios Kazadzis, Natalia Kouremeti, Stephan Nyeki, Julian Gröbner, and Christoph Wehrli
Geosci. Instrum. Method. Data Syst., 7, 39–53, https://doi.org/10.5194/gi-7-39-2018, https://doi.org/10.5194/gi-7-39-2018, 2018
Short summary
Short summary
The World Optical Depth Research Calibration Center (WORCC) has been established after the recommendations of WMO for calibration of aerosol optical depth (AOD) -related sun photometers. WORCC is mandated to initiate homogenization activities among different AOD networks and to run a network (GAW-PFR) of sun photometers. To calibrate such instruments aiming at low measurement uncertainties the quality assurance, quality control and a basic hierarchy have to be defined and followed.
Christine Aebi, Julian Gröbner, Niklaus Kämpfer, and Laurent Vuilleumier
Atmos. Meas. Tech., 10, 4587–4600, https://doi.org/10.5194/amt-10-4587-2017, https://doi.org/10.5194/amt-10-4587-2017, 2017
Short summary
Short summary
The current study analyses the cloud radiative effect during the daytime depending on cloud fraction and cloud type at two stations in Switzerland over a time period of 3–5 years. Information about fractional cloud coverage and cloud type is retrieved from images taken by visible all-sky cameras. Cloud cover, cloud type and other atmospheric parameters have an influence on the magnitude of the longwave cloud effect as well as on the shortwave.
René Stübi, Herbert Schill, Jörg Klausen, Laurent Vuilleumier, Julian Gröbner, Luca Egli, and Dominique Ruffieux
Atmos. Meas. Tech., 10, 4479–4490, https://doi.org/10.5194/amt-10-4479-2017, https://doi.org/10.5194/amt-10-4479-2017, 2017
Short summary
Short summary
Long-term measurement series are the pillars of all climate change analysis. The Arosa total ozone series is the world's longest record, starting in 1926. To secure the future of these measurements, it is foreseen to move the instruments in Davos. To ascertain that the series will not be affected by this change, a multiyear campaign of parallel measurements on both sites has been done. The analysis of these data is presented and it is concluded that no discernible difference can be identified.
Julian Gröbner, Ingo Kröger, Luca Egli, Gregor Hülsen, Stefan Riechelmann, and Peter Sperfeld
Atmos. Meas. Tech., 10, 3375–3383, https://doi.org/10.5194/amt-10-3375-2017, https://doi.org/10.5194/amt-10-3375-2017, 2017
Short summary
Short summary
We have produced a benchmark high-resolution solar extraterrestrial spectrum from ground-based measurements of direct solar irradiance in the wavelength range 300 to 500 nm. This spectrum can be used for model calculations and for validating solar spectra measured in space. The metrological traceability of this solar spectrum to the International System of Units (SI) is assured by an unbroken chain of calibrations traceable to the primary spectral irradiance standard of PTB.
Stephan Nyeki, Stefan Wacker, Julian Gröbner, Wolfgang Finsterle, and Martin Wild
Atmos. Meas. Tech., 10, 3057–3071, https://doi.org/10.5194/amt-10-3057-2017, https://doi.org/10.5194/amt-10-3057-2017, 2017
Short summary
Short summary
A large number of radiometers used to measure solar and terrestrial broadband radiation are traceable to World Standard Groups at PMOD/WRC in Davos, Switzerland. A small correction of each group may be required in the future, and this study examines the methods and implications of this on data sets collected at four remote baseline stations since the 1990s. The goal is to develop a better estimate of the solar and terrestrial radiation budget at the Earth's surface.
Thomas Carlund, Natalia Kouremeti, Stelios Kazadzis, and Julian Gröbner
Atmos. Meas. Tech., 10, 905–923, https://doi.org/10.5194/amt-10-905-2017, https://doi.org/10.5194/amt-10-905-2017, 2017
Short summary
Short summary
Aerosols play an important role in atmospheric processes. Aerosol optical depth is the most common measure of columnar aerosol load. We present a sunphotometer called UVPFR that is able to measure aerosol optical depth in the ultraviolet range, including the calibration, characterization and validation of the instrument/measurements. The instrument will serve as a reference on the intercalibration of Brewer spectrophotometers that are also able to measure aerosol optical depth in the UV region.
Christos S. Zerefos, Kostas Eleftheratos, John Kapsomenakis, Stavros Solomos, Antje Inness, Dimitris Balis, Alberto Redondas, Henk Eskes, Marc Allaart, Vassilis Amiridis, Arne Dahlback, Veerle De Bock, Henri Diémoz, Ronny Engelmann, Paul Eriksen, Vitali Fioletov, Julian Gröbner, Anu Heikkilä, Irina Petropavlovskikh, Janusz Jarosławski, Weine Josefsson, Tomi Karppinen, Ulf Köhler, Charoula Meleti, Christos Repapis, John Rimmer, Vladimir Savinykh, Vadim Shirotov, Anna Maria Siani, Andrew R. D. Smedley, Martin Stanek, and René Stübi
Atmos. Chem. Phys., 17, 551–574, https://doi.org/10.5194/acp-17-551-2017, https://doi.org/10.5194/acp-17-551-2017, 2017
Short summary
Short summary
The paper makes a convincing case that the Brewer network is capable of detecting enhanced SO2 columns, as observed, e.g., after volcanic eruptions. For this reason, large volcanic eruptions of the past decade have been used to detect and forecast SO2 plumes of volcanic origin using the Brewer and other ground-based networks, aided by satellite, trajectory analysis calculations and modelling.
Luca Egli, Julian Gröbner, Gregor Hülsen, Luciano Bachmann, Mario Blumthaler, Jimmy Dubard, Marina Khazova, Richard Kift, Kees Hoogendijk, Antonio Serrano, Andrew Smedley, and José-Manuel Vilaplana
Atmos. Meas. Tech., 9, 1553–1567, https://doi.org/10.5194/amt-9-1553-2016, https://doi.org/10.5194/amt-9-1553-2016, 2016
Short summary
Short summary
Array spectroradiometers are small, light, robust and cost-effective instruments, and are increasingly used for atmospheric measurements. The quality of array spectroradiometers is assessed for the reliable quantification of ultraviolet radiation (UV) in order to monitor the exposure of UV radiation to human health. The study shows that reliable UV measurements with these instruments are limited for observations around noon and show large biases in the morning and evening.
África Barreto, Emilio Cuevas, María-José Granados-Muñoz, Lucas Alados-Arboledas, Pedro M. Romero, Julian Gröbner, Natalia Kouremeti, Antonio F. Almansa, Tom Stone, Carlos Toledano, Roberto Román, Mikhail Sorokin, Brent Holben, Marius Canini, and Margarita Yela
Atmos. Meas. Tech., 9, 631–654, https://doi.org/10.5194/amt-9-631-2016, https://doi.org/10.5194/amt-9-631-2016, 2016
Short summary
Short summary
This paper presents the new photometer CE318-T, able to perform daytime and
night-time photometric measurements using the sun and the moon as light
sources. This new device permits a complete cycle of diurnal aerosol and water vapour measurements to be extracted, valuable to enhance atmospheric monitoring. We have also highlighted the ability of this new device to capture short-term atmospheric variations, critical for climate studies.
Y. Bühler, M. Marty, L. Egli, J. Veitinger, T. Jonas, P. Thee, and C. Ginzler
The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, https://doi.org/10.5194/tc-9-229-2015, 2015
Short summary
Short summary
We are able to map snow depth over large areas ( > 100km2) using airborne digital photogrammetry. Digital photogrammetry is more economical than airborne Laser Scanning but slightly less accurate. Comparisons to independent snow depth measurements reveal an accuracy of about 30cm. Spatial continuous mapping of snow depth is a major step forward compared to point measurements usually applied today. Limitations are steep slopes (> 50°) and areas covered by trees and scrubs.
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
S. Kazadzis, I. Veselovskii, V. Amiridis, J. Gröbner, A. Suvorina, S. Nyeki, E. Gerasopoulos, N. Kouremeti, M. Taylor, A. Tsekeri, and C. Wehrli
Atmos. Meas. Tech., 7, 2013–2025, https://doi.org/10.5194/amt-7-2013-2014, https://doi.org/10.5194/amt-7-2013-2014, 2014
A. Stenke, C. R. Hoyle, B. Luo, E. Rozanov, J. Gröbner, L. Maag, S. Brönnimann, and T. Peter
Atmos. Chem. Phys., 13, 9713–9729, https://doi.org/10.5194/acp-13-9713-2013, https://doi.org/10.5194/acp-13-9713-2013, 2013
T. Egorova, E. Rozanov, J. Gröbner, M. Hauser, and W. Schmutz
Atmos. Chem. Phys., 13, 3811–3823, https://doi.org/10.5194/acp-13-3811-2013, https://doi.org/10.5194/acp-13-3811-2013, 2013
Related subject area
Subject: Gases | Technique: Remote Sensing | Topic: Instruments and Platforms
Design study for an airborne N2O lidar
The Pyrenean Platform for Observation of the Atmosphere: site, long-term dataset, and science
The Small Mobile Ozone Lidar (SMOL): instrument description and first results
A novel, balloon-borne UV–Vis spectrometer for direct sun measurements of stratospheric bromine
Tropospheric Ozone sensing with a differential absorption lidar based on single CO2 Raman cell
Stability requirements of satellites to detect long-term stratospheric ozone trends based upon Monte Carlo simulations
Martian column CO2 and pressure measurement with spaceborne differential absorption lidar at 1.96 µm
Offshore methane detection and quantification from space using sun glint measurements with the GHGSat constellation
Novel use of an adapted ultraviolet double monochromator for measurements of global and direct irradiance, ozone, and aerosol
Geostationary Environment Monitoring Spectrometer (GEMS) polarization characteristics and correction algorithm
An open-path observatory for greenhouse gases based on near-infrared Fourier transform spectroscopy
Ground-to-UAV, laser-based emissions quantification of methane and acetylene at long standoff distances
A portable reflected-sunlight spectrometer for CO2 and CH4
Open-path measurement of stable water isotopologues using mid-infrared dual-comb spectroscopy
Total column ozone retrieval from a novel array spectroradiometer
Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder
The site-specific primary calibration conditions for the Brewer spectrophotometer
Precipitable water vapor retrievals using a ground-based infrared sky camera in subtropical South America
Theoretical assessment of the ability of the MicroCarb satellite city-scan observing mode to estimate urban CO2 emissions
UAV-based sampling systems to analyse greenhouse gases and volatile organic compounds encompassing compound-specific stable isotope analysis
Performance and polarization response of slit homogenizers for the GeoCarb mission
Exploring bias in the OCO-3 snapshot area mapping mode via geometry, surface, and aerosol effects
Updated spectral radiance calibration on TIR bands for TANSO-FTS-2 onboard GOSAT-2
Evaluation of the High Altitude Lidar Observatory (HALO) methane retrievals during the summer 2019 ACT-America campaign
Polarization performance simulation for the GeoXO atmospheric composition instrument: NO2 retrieval impacts
The impact of aerosol fluorescence on long-term water vapor monitoring by Raman lidar and evaluation of a potential correction method
Integrated airborne investigation of the air composition over the Russian sector of the Arctic
Measurement of the vertical atmospheric density profile from the X-ray Earth occultation of the Crab Nebula with Insight-HXMT
Quantification and mitigation of the instrument effects and uncertainties of the airborne limb imaging FTIR GLORIA
Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON)
Ground-based Ku-band microwave observations of ozone in the polar middle atmosphere
Traceable total ozone column retrievals from direct solar spectral irradiance measurements in the ultraviolet
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite
The NO2 camera based on gas correlation spectroscopy
Total water vapour columns derived from Sentinel 5P using the AMC-DOAS method
Mobile and high-spectral-resolution Fabry–Pérot interferometer spectrographs for atmospheric remote sensing
Diurnal variability of stratospheric column NO2 measured using direct solar and lunar spectra over Table Mountain, California (34.38° N)
The “ideal” spectrograph for atmospheric observations
Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: sensitivity analysis with respect to regional atmospheric variability
Atmospheric carbon dioxide measurement from aircraft and comparison with OCO-2 and CarbonTracker model data
Long-term column-averaged greenhouse gas observations using a COCCON spectrometer at the high-surface-albedo site in Gobabeb, Namibia
A fully automated Dobson sun spectrophotometer for total column ozone and Umkehr measurements
Slit homogenizer introduced performance gain analysis based on the Sentinel-5/UVNS spectrometer
On the capability of the future ALTIUS ultraviolet–visible–near-infrared limb sounder to constrain modelled stratospheric ozone
MicroPulse DIAL (MPD) – a diode-laser-based lidar architecture for quantitative atmospheric profiling
A multi-purpose, multi-rotor drone system for long-range and high-altitude volcanic gas plume measurements
Tropospheric NO2 measurements using a three-wavelength optical parametric oscillator differential absorption lidar
Spectral calibration of the MethaneAIR instrument
Performance of an open-path near-infrared measurement system for measurements of CO2 and CH4 during extended field trials
Determination of the emission rates of CO2 point sources with airborne lidar
Christoph Kiemle, Andreas Fix, Christian Fruck, Gerhard Ehret, and Martin Wirth
Atmos. Meas. Tech., 17, 6569–6578, https://doi.org/10.5194/amt-17-6569-2024, https://doi.org/10.5194/amt-17-6569-2024, 2024
Short summary
Short summary
Nitrous oxide is the third most important greenhouse gas modified by human activities after carbon dioxide and methane. This study examines the feasibility of airborne differential absorption lidar to quantify emissions from agriculture, fossil fuel combustion, industry, and biomass burning. Simulations show that a technically realizable and affordable mid-infrared lidar system will be able to measure the nitrous oxide column concentration enhancements with sufficient precision.
Marie Lothon, François Gheusi, Fabienne Lohou, Véronique Pont, Serge Soula, Corinne Jambert, Solène Derrien, Yannick Bezombes, Emmanuel Leclerc, Gilles Athier, Antoine Vial, Alban Philibert, Bernard Campistron, Frédérique Saïd, Jeroen Sonke, Julien Amestoy, Erwan Bargain, Pierre Bosser, Damien Boulanger, Guillaume Bret, Renaud Bodichon, Laurent Cabanas, Guylaine Canut, Jean-Bernard Estrampes, Eric Gardrat, Zaida Gomez Kuri, Jérémy Gueffier, Fabienne Guesdon, Morgan Lopez, Olivier Masson, Pierre-Yves Meslin, Yves Meyerfeld, Nicolas Pascal, Eric Pique, Michel Ramonet, Felix Starck, and Romain Vidal
Atmos. Meas. Tech., 17, 6265–6300, https://doi.org/10.5194/amt-17-6265-2024, https://doi.org/10.5194/amt-17-6265-2024, 2024
Short summary
Short summary
The Pyrenean Platform for Observation of the Atmosphere (P2OA) is a coupled plain–mountain instrumented platform in southwestern France for the monitoring of climate variables and the study of meteorological processes in a mountainous region. A comprehensive description of this platform is presented for the first time: its instrumentation, the associated dataset, and a meteorological characterization the site. The potential of the P2OA is illustrated through several examples of process studies.
Fernando Chouza, Thierry Leblanc, Patrick Wang, Steven S. Brown, Kristen Zuraski, Wyndom Chace, Caroline C. Womack, Jeff Peischl, John Hair, Taylor Shingler, and John Sullivan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-154, https://doi.org/10.5194/amt-2024-154, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
The JPL lidar group developed the SMOL (Small Mobile Ozone Lidar), an affordable ozone differential absorption lidar (DIAL) system covering all altitudes from 200 m to 10 km. a.g.l. The comparison with airborne in-situ and lidar measurements shows very good agreement. An additional comparison with nearby surface ozone measuring instruments indicates unbiased measurements by the SMOL lidars down to 200 m above ground level.
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024, https://doi.org/10.5194/amt-17-4507-2024, 2024
Short summary
Short summary
A novel balloon-borne instrument for direct sun and solar occultation measurements of several UV–Vis absorbing gases (e.g. O3, NO2, BrO, IO, and HONO) is described. Its major design features and performance during two stratospheric deployments are discussed. From the measured overhead BrO concentration and a suitable photochemical correction, total stratospheric bromine is inferred to (17.5 ± 2.2) ppt in air masses which entered the stratosphere around early 2017 ± 1 year.
Guangqiang Fan, Yibin Fu, Juntao Huo, Yan Xiang, Tianshu Zhang, and Wenqing Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1853, https://doi.org/10.5194/egusphere-2024-1853, 2024
Short summary
Short summary
Differential absorption lidar is a instrument for determining the spatial and temporal distribution of the ozone. We present an ozone differential absorption lidar system based on the single CO2 Raman cell and the grating spectrometer to detect ozone in both the planetary boundary layer and the free troposphere simultaneously. Many uncertainties including aerosol interference induced errors, and the system errors caused by wavelength index uncertainty are conducted a more thorough investigation.
Mark Weber
Atmos. Meas. Tech., 17, 3597–3604, https://doi.org/10.5194/amt-17-3597-2024, https://doi.org/10.5194/amt-17-3597-2024, 2024
Short summary
Short summary
We investigate how stable the performance of a satellite instrument has to be to be useful for assessing long-term trends in stratospheric ozone. The stability of an instrument is specified in percent per decade and is also called instrument drift. Instrument drifts add to uncertainties of long-term trends. From simulated time series of ozone based on the Monte Carlo approach, we determine stability requirements that are needed to achieve the desired long-term trend uncertainty.
Zhaoyan Liu, Bing Lin, Joel F. Campbell, Jirong Yu, Jihong Geng, and Shibin Jiang
Atmos. Meas. Tech., 17, 2977–2990, https://doi.org/10.5194/amt-17-2977-2024, https://doi.org/10.5194/amt-17-2977-2024, 2024
Short summary
Short summary
We introduce a concept utilizing a differential absorption barometric lidar operating within the 1.96 µm CO2 absorption band. Our focus is on a compact lidar configuration, featuring reduced telescope size and lower laser pulse energies towards minimizing costs for potential forthcoming Mars missions. The core measurement objectives encompass the determination of column CO2 absorption optical depth and abundance, surface air pressure, and vertical distributions of dust and cloud layers.
Jean-Philippe W. MacLean, Marianne Girard, Dylan Jervis, David Marshall, Jason McKeever, Antoine Ramier, Mathias Strupler, Ewan Tarrant, and David Young
Atmos. Meas. Tech., 17, 863–874, https://doi.org/10.5194/amt-17-863-2024, https://doi.org/10.5194/amt-17-863-2024, 2024
Short summary
Short summary
We demonstrate the capabilities of the GHGSat satellite constellation to detect and quantify offshore methane emissions using a sun glint observation mode. Using this technique, we observe offshore methane emissions from space ranging from 180 kg h−1 to 84 000 kg h−1. We further assess the instrument performance in offshore environments, both empirically and using analytical modelling, and find that the detection limit varies with latitude and season.
Alexander Geddes, Ben Liley, Richard McKenzie, Michael Kotkamp, and Richard Querel
Atmos. Meas. Tech., 17, 827–838, https://doi.org/10.5194/amt-17-827-2024, https://doi.org/10.5194/amt-17-827-2024, 2024
Short summary
Short summary
In this paper we describe a unique spectrometer that has been developed and tested over 10 years at Lauder, New Zealand. The spectrometer in question, UV2, makes alternating measurements of global UV and direct sun UV irradiance. After an assessment of the instrument performance, we compare the ozone and aerosol optical depth derived from UV2 to other independent measurements, finding excellent agreement suggesting that UV2 could supersede these measurements, particularly for ozone.
Haklim Choi, Xiong Liu, Ukkyo Jeong, Heesung Chong, Jhoon Kim, Myung Hwan Ahn, Dai Ho Ko, Dong-Won Lee, Kyung-Jung Moon, and Kwang-Mog Lee
Atmos. Meas. Tech., 17, 145–164, https://doi.org/10.5194/amt-17-145-2024, https://doi.org/10.5194/amt-17-145-2024, 2024
Short summary
Short summary
GEMS is the first geostationary satellite to measure the UV--Vis region, and this paper reports the polarization characteristics of GEMS and an algorithm. We develop a polarization correction algorithm optimized for GEMS based on a look-up-table approach that simultaneously considers the polarization of incoming light and polarization sensitivity characteristics of the instrument. Pre-launch polarization error was adjusted close to zero across the spectral range after polarization correction.
Tobias D. Schmitt, Jonas Kuhn, Ralph Kleinschek, Benedikt A. Löw, Stefan Schmitt, William Cranton, Martina Schmidt, Sanam N. Vardag, Frank Hase, David W. T. Griffith, and André Butz
Atmos. Meas. Tech., 16, 6097–6110, https://doi.org/10.5194/amt-16-6097-2023, https://doi.org/10.5194/amt-16-6097-2023, 2023
Short summary
Short summary
Our new observatory measures greenhouse gas concentrations of carbon dioxide (CO2) and methane (CH4) along a 1.55 km long light path over the city of Heidelberg, Germany. We compared our measurements with measurements that were taken at a single point at one end of our path. The two mostly agreed but show a significant difference for CO2 with certain wind directions. This is important when using greenhouse gas concentration measurements to observe greenhouse gas emissions of cities.
Kevin C. Cossel, Eleanor M. Waxman, Eli Hoenig, Daniel Hesselius, Christopher Chaote, Ian Coddington, and Nathan R. Newbury
Atmos. Meas. Tech., 16, 5697–5707, https://doi.org/10.5194/amt-16-5697-2023, https://doi.org/10.5194/amt-16-5697-2023, 2023
Short summary
Short summary
Measurements of the emission rate of a gas or gases from point and area sources are important in a range of monitoring applications. We demonstrate a method for rapid quantification of the emission rate of multiple gases using a spatially scannable open-path sensor. The open-path spectrometer measures the total column density of gases between the spectrometer and a retroreflector mounted on an uncrewed aerial vehicle (UAV). By scanning the UAV altitude, we can determine the total gas emissions.
Benedikt A. Löw, Ralph Kleinschek, Vincent Enders, Stanley P. Sander, Thomas J. Pongetti, Tobias D. Schmitt, Frank Hase, Julian Kostinek, and André Butz
Atmos. Meas. Tech., 16, 5125–5144, https://doi.org/10.5194/amt-16-5125-2023, https://doi.org/10.5194/amt-16-5125-2023, 2023
Short summary
Short summary
We developed a portable spectrometer (EM27/SCA) that remotely measures greenhouse gases in the lower atmosphere above a target region. The measurements can deliver insights into local emission patterns. To evaluate its performance, we set up the EM27/SCA above the Los Angeles Basin side by side with a similar non-portable instrument (CLARS-FTS). The precision is promising and the measurements are consistent with CLARS-FTS. In the future, we need to account for light scattering.
Daniel I. Herman, Griffin Mead, Fabrizio R. Giorgetta, Esther Baumann, Nathan A. Malarich, Brian R. Washburn, Nathan R. Newbury, Ian Coddington, and Kevin C. Cossel
Atmos. Meas. Tech., 16, 4053–4066, https://doi.org/10.5194/amt-16-4053-2023, https://doi.org/10.5194/amt-16-4053-2023, 2023
Short summary
Short summary
Measurements of the isotope ratio of water vapor provide information about the sources and history of water vapor at a given location, which can be used to understand the impacts of climate change on global water use. Here, we demonstrate a new method for measuring isotope ratios over long open-air paths, which can reduce sampling bias and provide more spatial averaging than standard point sensor methods. We show that this new technique has high sensitivity and accuracy.
Luca Egli, Julian Gröbner, Herbert Schill, and Eliane Maillard Barras
Atmos. Meas. Tech., 16, 2889–2902, https://doi.org/10.5194/amt-16-2889-2023, https://doi.org/10.5194/amt-16-2889-2023, 2023
Short summary
Short summary
This paper introduces a new method to retrieve total column ozone with spectral ground-based measurements from a novel array spectroradiometer. Total column ozone estimates using the small, cost-effective, and robust instrument and the new retrieval method are compared with other co-located total column ozone instruments. The comparison shows that the new system performs similarly to other well-established instruments, which require substantially more maintenance than the system introduced here.
Frank Werner, Nathaniel J. Livesey, Luis F. Millán, William G. Read, Michael J. Schwartz, Paul A. Wagner, William H. Daffer, Alyn Lambert, Sasha N. Tolstoff, and Michelle L. Santee
Atmos. Meas. Tech., 16, 2733–2751, https://doi.org/10.5194/amt-16-2733-2023, https://doi.org/10.5194/amt-16-2733-2023, 2023
Short summary
Short summary
The algorithm that produces the near-real-time data products of the Aura Microwave Limb Sounder has been updated. The new algorithm is based on machine learning techniques and yields data products with much improved accuracy. It is shown that the new algorithm outperforms the previous versions, even when it is trained on only a few years of satellite observations. This confirms the potential of applying machine learning to the near-real-time efforts of other current and future mission concepts.
Xiaoyi Zhao, Vitali Fioletov, Alberto Redondas, Julian Gröbner, Luca Egli, Franz Zeilinger, Javier López-Solano, Alberto Berjón Arroyo, James Kerr, Eliane Maillard Barras, Herman Smit, Michael Brohart, Reno Sit, Akira Ogyu, Ihab Abboud, and Sum Chi Lee
Atmos. Meas. Tech., 16, 2273–2295, https://doi.org/10.5194/amt-16-2273-2023, https://doi.org/10.5194/amt-16-2273-2023, 2023
Short summary
Short summary
The Brewer ozone spectrophotometer is one of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW)'s standard ozone monitoring instruments since the 1980s. This work is aimed at obtaining answers to (1) why Brewer primary calibration work can only be performed at certain sites (e.g., Izaña and MLO) and (2) what is needed to assure the equivalence of calibration quality from different sites.
Elion Daniel Hack, Theotonio Pauliquevis, Henrique Melo Jorge Barbosa, Marcia Akemi Yamasoe, Dimitri Klebe, and Alexandre Lima Correia
Atmos. Meas. Tech., 16, 1263–1278, https://doi.org/10.5194/amt-16-1263-2023, https://doi.org/10.5194/amt-16-1263-2023, 2023
Short summary
Short summary
Water vapor is a key factor when seeking to understand fast-changing processes when clouds and storms form and develop. We show here how images from a calibrated infrared camera can be used to derive how much water vapor there is in the atmosphere at a given time. Comparing our results to an established technique, for a case of stable atmospheric conditions, we found an agreement within 2.8 %. Water vapor sky maps can be retrieved every few minutes, day or night, under partly cloudy skies.
Kai Wu, Paul I. Palmer, Dien Wu, Denis Jouglet, Liang Feng, and Tom Oda
Atmos. Meas. Tech., 16, 581–602, https://doi.org/10.5194/amt-16-581-2023, https://doi.org/10.5194/amt-16-581-2023, 2023
Short summary
Short summary
We evaluate the theoretical ability of the upcoming MicroCarb satellite to estimate urban CO2 emissions over Paris and London. We explore the relative performance of alternative two-sweep and three-sweep city observing modes and take into account the impacts of cloud cover and urban biological CO2 fluxes. Our results find both the two-sweep and three-sweep observing modes are able to reduce prior flux errors by 20 %–40 % depending on the prevailing wind direction and cloud coverage.
Simon Leitner, Wendelin Feichtinger, Stefan Mayer, Florian Mayer, Dustin Krompetz, Rebecca Hood-Nowotny, and Andrea Watzinger
Atmos. Meas. Tech., 16, 513–527, https://doi.org/10.5194/amt-16-513-2023, https://doi.org/10.5194/amt-16-513-2023, 2023
Short summary
Short summary
An increased social environmental awareness requires the monitoring of greenhouse gases (GHGs). We report on the development of two sampling devices (which can be mounted to a drone) and the subsequent measurement setup to analyse these gases. The functionality of the presented system was tested in the field, and the results emphasised the functionality of the sampling and measurement setup, demonstrating that it is a viable tool for monitoring GHGs and identifying their emission sources.
Sean Crowell, Tobias Haist, Michael Tscherpel, Jérôme Caron, Eric Burgh, and Berrien Moore III
Atmos. Meas. Tech., 16, 195–208, https://doi.org/10.5194/amt-16-195-2023, https://doi.org/10.5194/amt-16-195-2023, 2023
Short summary
Short summary
Variations in brightness in radiance measurements cause errors that can be mitigated with hardware that scrambles the pattern of the incoming light. GeoCarb took this route to minimize this source of errors, but lab testing determined that the solution chosen was too sensitive to the the polarization of the incoming light. Modeling found that this was a predictable result of using gold coatings in the design, which is typical of spaceflight optical instruments.
Emily Bell, Christopher W. O'Dell, Thomas E. Taylor, Aronne Merrelli, Robert R. Nelson, Matthäus Kiel, Annmarie Eldering, Robert Rosenberg, and Brendan Fisher
Atmos. Meas. Tech., 16, 109–133, https://doi.org/10.5194/amt-16-109-2023, https://doi.org/10.5194/amt-16-109-2023, 2023
Short summary
Short summary
A small percentage of data from the Orbiting Carbon Observatory-3 (OCO-3) instrument has been shown to have a geometry-related bias in the earliest public data release. This work shows that the bias is due to a complex interplay of aerosols and viewing geometry and is largely mitigated in the latest data version through improved bias correction and quality filtering.
Hiroshi Suto, Fumie Kataoka, Robert O. Knuteson, Kei Shiomi, Nobuhiro Kikuchi, and Akihiko Kuze
Atmos. Meas. Tech., 15, 5399–5413, https://doi.org/10.5194/amt-15-5399-2022, https://doi.org/10.5194/amt-15-5399-2022, 2022
Short summary
Short summary
TANSO-FTS-2 onboard GOSAT-2 has operated nominally since February 2019, and the atmospheric radiance spectra it has acquired have been released to the public. This paper describes an updated model for spectral radiance calibration of TIR and its validation. The multi-satellite sensor and multi-angle comparison results suggest that the spectral radiance for TANSO-FTS-2 TIR, version v210210, is superior to that of the previous version in its consistency of multi-satellite sensor data.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech., 15, 4623–4650, https://doi.org/10.5194/amt-15-4623-2022, https://doi.org/10.5194/amt-15-4623-2022, 2022
Short summary
Short summary
HALO is a multi-functional lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather dynamics, and radiation science suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in situ observations.
Aaron Pearlman, Monica Cook, Boryana Efremova, Francis Padula, Lok Lamsal, Joel McCorkel, and Joanna Joiner
Atmos. Meas. Tech., 15, 4489–4501, https://doi.org/10.5194/amt-15-4489-2022, https://doi.org/10.5194/amt-15-4489-2022, 2022
Short summary
Short summary
NOAA’s Geostationary Extended Observations (GeoXO) constellation is planned to consist of an atmospheric composition instrument (ACX) to support air quality forecasting and monitoring. As design trade-offs are being studied, we investigated one parameter, the polarization sensitivity, which has yet to be fully documented for NO2 retrievals. Our simulation study explores these impacts to inform the ACX’s development and better understand polarization’s role in trace gas retrievals.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Giovanni Martucci, Alexander Haefele, Hélène Vérèmes, Valentin Duflot, Guillaume Payen, and Philippe Keckhut
Atmos. Meas. Tech., 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022, https://doi.org/10.5194/amt-15-4241-2022, 2022
Short summary
Short summary
The comparison of water vapor lidar measurements with co-located radiosondes and aerosol backscatter profiles indicates that laser-induced aerosol fluorescence in smoke layers injected into the stratosphere can introduce very large and chronic wet biases above 15 km, thus impacting the ability of these systems to accurately estimate long-term water vapor trends. The proposed correction method presented in this work is able to reduce this fluorescence-induced bias from 75 % to under 5 %.
Boris D. Belan, Gerard Ancellet, Irina S. Andreeva, Pavel N. Antokhin, Viktoria G. Arshinova, Mikhail Y. Arshinov, Yurii S. Balin, Vladimir E. Barsuk, Sergei B. Belan, Dmitry G. Chernov, Denis K. Davydov, Alexander V. Fofonov, Georgii A. Ivlev, Sergei N. Kotel'nikov, Alexander S. Kozlov, Artem V. Kozlov, Katharine Law, Andrey V. Mikhal'chishin, Igor A. Moseikin, Sergei V. Nasonov, Philippe Nédélec, Olesya V. Okhlopkova, Sergei E. Ol'kin, Mikhail V. Panchenko, Jean-Daniel Paris, Iogannes E. Penner, Igor V. Ptashnik, Tatyana M. Rasskazchikova, Irina K. Reznikova, Oleg A. Romanovskii, Alexander S. Safatov, Denis E. Savkin, Denis V. Simonenkov, Tatyana K. Sklyadneva, Gennadii N. Tolmachev, Semyon V. Yakovlev, and Polina N. Zenkova
Atmos. Meas. Tech., 15, 3941–3967, https://doi.org/10.5194/amt-15-3941-2022, https://doi.org/10.5194/amt-15-3941-2022, 2022
Short summary
Short summary
The change of the global climate is most pronounced in the Arctic, where the air temperature increases faster than the global average. This is associated with an increase in the concentration of greenhouse gases in the atmosphere. It is important to study how the air composition in the Arctic changes in the changing climate. Thus this integrated experiment was carried out to measure the composition of the troposphere in the Russian sector of the Arctic from on board the aircraft laboratory.
Daochun Yu, Haitao Li, Baoquan Li, Mingyu Ge, Youli Tuo, Xiaobo Li, Wangchen Xue, Yaning Liu, Aoying Wang, Yajun Zhu, and Bingxian Luo
Atmos. Meas. Tech., 15, 3141–3159, https://doi.org/10.5194/amt-15-3141-2022, https://doi.org/10.5194/amt-15-3141-2022, 2022
Short summary
Short summary
In this work, the measurement of vertical atmospheric density profiles using X-ray Earth occultation is investigated. The Earth’s density profile for the lower thermosphere is obtained with Insight-HXMT. It is shown that the Insight-HXMT X-ray satellite of China can be used as an X-ray atmospheric diagnostics instrument for the upper atmosphere. The Insight-HXMT satellite can, with other X-ray astronomical satellites in orbit, form a network for X-ray Earth occultation sounding in the future.
Jörn Ungermann, Anne Kleinert, Guido Maucher, Irene Bartolomé, Felix Friedl-Vallon, Sören Johansson, Lukas Krasauskas, and Tom Neubert
Atmos. Meas. Tech., 15, 2503–2530, https://doi.org/10.5194/amt-15-2503-2022, https://doi.org/10.5194/amt-15-2503-2022, 2022
Short summary
Short summary
GLORIA is a 2-D infrared imaging spectrometer operated on two high-flying research aircraft. This paper details our instrument calibration and characterization efforts, which in particular leverage in-flight data almost exclusively and often exploit the novel 2-D nature of the measurements. We show that the instrument surpasses the original instrument specifications and conclude by analyzing how the derived errors affect temperature and ozone retrievals, two of our main derived quantities.
Carlos Alberti, Frank Hase, Matthias Frey, Darko Dubravica, Thomas Blumenstock, Angelika Dehn, Paolo Castracane, Gregor Surawicz, Roland Harig, Bianca C. Baier, Caroline Bès, Jianrong Bi, Hartmut Boesch, André Butz, Zhaonan Cai, Jia Chen, Sean M. Crowell, Nicholas M. Deutscher, Dragos Ene, Jonathan E. Franklin, Omaira García, David Griffith, Bruno Grouiez, Michel Grutter, Abdelhamid Hamdouni, Sander Houweling, Neil Humpage, Nicole Jacobs, Sujong Jeong, Lilian Joly, Nicholas B. Jones, Denis Jouglet, Rigel Kivi, Ralph Kleinschek, Morgan Lopez, Diogo J. Medeiros, Isamu Morino, Nasrin Mostafavipak, Astrid Müller, Hirofumi Ohyama, Paul I. Palmer, Mahesh Pathakoti, David F. Pollard, Uwe Raffalski, Michel Ramonet, Robbie Ramsay, Mahesh Kumar Sha, Kei Shiomi, William Simpson, Wolfgang Stremme, Youwen Sun, Hiroshi Tanimoto, Yao Té, Gizaw Mengistu Tsidu, Voltaire A. Velazco, Felix Vogel, Masataka Watanabe, Chong Wei, Debra Wunch, Marcia Yamasoe, Lu Zhang, and Johannes Orphal
Atmos. Meas. Tech., 15, 2433–2463, https://doi.org/10.5194/amt-15-2433-2022, https://doi.org/10.5194/amt-15-2433-2022, 2022
Short summary
Short summary
Space-borne greenhouse gas missions require ground-based validation networks capable of providing fiducial reference measurements. Here, considerable refinements of the calibration procedures for the COllaborative Carbon Column Observing Network (COCCON) are presented. Laboratory and solar side-by-side procedures for the characterization of the spectrometers have been refined and extended. Revised calibration factors for XCO2, XCO and XCH4 are provided, incorporating 47 new spectrometers.
David A. Newnham, Mark A. Clilverd, William D. J. Clark, Michael Kosch, Pekka T. Verronen, and Alan E. E. Rogers
Atmos. Meas. Tech., 15, 2361–2376, https://doi.org/10.5194/amt-15-2361-2022, https://doi.org/10.5194/amt-15-2361-2022, 2022
Short summary
Short summary
Ozone (O3) is an important trace gas in the mesosphere and lower thermosphere (MLT), affecting heating rates and chemistry. O3 profiles measured by the Ny-Ålesund Ozone in the Mesosphere Instrument agree with Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) for winter night-time, but autumn twilight SABER abundances are up to 50 % higher. O3 abundances in the MLT from two different SABER channels also show significant differences for both autumn twilight and summer daytime.
Luca Egli, Julian Gröbner, Gregor Hülsen, Herbert Schill, and René Stübi
Atmos. Meas. Tech., 15, 1917–1930, https://doi.org/10.5194/amt-15-1917-2022, https://doi.org/10.5194/amt-15-1917-2022, 2022
Short summary
Short summary
This study presents traceable total column ozone retrievals from direct solar spectral irradiance measurements. The retrieved ozone does not require any field calibration with a reference instrument as it is required for other operational network instruments such as Brewer or Dobson. Total column ozone can be retrieved with a traceable overall standard uncertainty of less than 0.8 % indicating a benchmark uncertainty for total column ozone measurements.
Yungang Wang, Liping Fu, Fang Jiang, Xiuqing Hu, Chengbao Liu, Xiaoxin Zhang, Jiawei Li, Zhipeng Ren, Fei He, Lingfeng Sun, Ling Sun, Zhongdong Yang, Peng Zhang, Jingsong Wang, and Tian Mao
Atmos. Meas. Tech., 15, 1577–1586, https://doi.org/10.5194/amt-15-1577-2022, https://doi.org/10.5194/amt-15-1577-2022, 2022
Short summary
Short summary
Far-ultraviolet (FUV) airglow radiation is particularly well suited for space-based remote sensing. The Ionospheric Photometer (IPM) instrument carried aboard the Feng Yun 3-D satellite measures the spectral radiance of the Earth FUV airglow. IPM is a tiny, highly sensitive, and robust remote sensing instrument. Initial results demonstrate that the performance of IPM meets the designed requirement and therefore can be used to study the thermosphere and ionosphere in the future.
Leon Kuhn, Jonas Kuhn, Thomas Wagner, and Ulrich Platt
Atmos. Meas. Tech., 15, 1395–1414, https://doi.org/10.5194/amt-15-1395-2022, https://doi.org/10.5194/amt-15-1395-2022, 2022
Short summary
Short summary
We present a novel instrument for imaging measurements of NO2 with high spatiotemporal resolution based on gas correlation spectroscopy, called the GCS NO2 camera. The instrument works by placing two gas cells (cuvettes) in front of two photosensor arrays, one filled with air and one filled with a high concentration of NO2, acting as a non-dispersive spectral filter. NO2 images are then generated on the basis of the signal ratio of the two channels in the spectral region of 430–445 nm.
Tobias Küchler, Stefan Noël, Heinrich Bovensmann, John Philip Burrows, Thomas Wagner, Christian Borger, Tobias Borsdorff, and Andreas Schneider
Atmos. Meas. Tech., 15, 297–320, https://doi.org/10.5194/amt-15-297-2022, https://doi.org/10.5194/amt-15-297-2022, 2022
Short summary
Short summary
We applied the air-mass-corrected differential optical absorption spectroscopy (AMC-DOAS) method to derive total column water vapour (TCWV) from Sentinel-5P measurements and compared it to independent data sets. The correlation coefficients of typically more than 0.9 and the small deviations up to 2.5 kg m−2 reveal good agreement between our data product and other TCWV data sets. In particular for the different Sentinel-5P water vapour products, the deviations are around 1 kg m−2.
Jonas Kuhn, Nicole Bobrowski, Thomas Wagner, and Ulrich Platt
Atmos. Meas. Tech., 14, 7873–7892, https://doi.org/10.5194/amt-14-7873-2021, https://doi.org/10.5194/amt-14-7873-2021, 2021
Short summary
Short summary
We propose spectrograph implementations using Fabry–Pérot interferometers for atmospheric trace gas remote sensing. Compared with widely used grating spectrographs, we find substantial light throughput and mobility advantages for high resolving powers. Besides lowering detection limits and increasing the spatial and temporal resolution of many atmospheric trace gas measurements, this approach might enable remote sensing of further important gases such as tropospheric OH radicals.
King-Fai Li, Ryan Khoury, Thomas J. Pongetti, Stanley P. Sander, Franklin P. Mills, and Yuk L. Yung
Atmos. Meas. Tech., 14, 7495–7510, https://doi.org/10.5194/amt-14-7495-2021, https://doi.org/10.5194/amt-14-7495-2021, 2021
Short summary
Short summary
Nitrogen dioxide (NO2) plays a dominant role in the stratospheric ozone-destroying catalytic cycle. We have retrieved the diurnal cycle of NO2 over Table Mountain in Southern California, USA, during a week in October 2018. Under clean conditions, we are able to predict the diurnal cycle using standard photochemistry. On a day with significant pollution, we see the effect of NO2 sources in the nearby Los Angeles Basin.
Ulrich Platt, Thomas Wagner, Jonas Kuhn, and Thomas Leisner
Atmos. Meas. Tech., 14, 6867–6883, https://doi.org/10.5194/amt-14-6867-2021, https://doi.org/10.5194/amt-14-6867-2021, 2021
Short summary
Short summary
Absorption spectroscopy of scattered sunlight is extremely useful for the analysis of atmospheric trace gas distributions. A central parameter for the achievable sensitivity of spectroscopic instruments is the light throughput, which can be enhanced in a number of ways. We present new ideas and considerations of how instruments could be optimized. Particular emphasis is on arrays of massively parallel instruments. Such arrays can reduce the size and weight of instruments by orders of magnitude.
Jonas Hamperl, Clément Capitaine, Jean-Baptiste Dherbecourt, Myriam Raybaut, Patrick Chazette, Julien Totems, Bruno Grouiez, Laurence Régalia, Rosa Santagata, Corinne Evesque, Jean-Michel Melkonian, Antoine Godard, Andrew Seidl, Harald Sodemann, and Cyrille Flamant
Atmos. Meas. Tech., 14, 6675–6693, https://doi.org/10.5194/amt-14-6675-2021, https://doi.org/10.5194/amt-14-6675-2021, 2021
Short summary
Short summary
Laser active remote sensing of tropospheric water vapor is a promising technology for enhancing our understanding of processes governing the global hydrological cycle. We investigate the potential of a ground-based lidar to monitor the main water vapor isotopes at high spatio-temporal resolutions in the lower troposphere. Using a realistic end-to-end simulator, we show that high-precision measurements can be achieved within a range of 1.5 km, in mid-latitude or tropical environments.
Qin Wang, Farhan Mustafa, Lingbing Bu, Shouzheng Zhu, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 14, 6601–6617, https://doi.org/10.5194/amt-14-6601-2021, https://doi.org/10.5194/amt-14-6601-2021, 2021
Short summary
Short summary
In this work, an airborne experiment was carried out to validate a newly developed CO2 monitoring IPDA lidar against the in situ measurements obtained from a commercial CO2 monitoring instrument installed on an aircraft. The XCO2 values calculated with the IPDA lidar measurements were compared with the dry-air CO2 mole fraction measurements obtained from the in situ instruments, and the results showed a good agreement between the two datasets.
Matthias M. Frey, Frank Hase, Thomas Blumenstock, Darko Dubravica, Jochen Groß, Frank Göttsche, Martin Handjaba, Petrus Amadhila, Roland Mushi, Isamu Morino, Kei Shiomi, Mahesh Kumar Sha, Martine de Mazière, and David F. Pollard
Atmos. Meas. Tech., 14, 5887–5911, https://doi.org/10.5194/amt-14-5887-2021, https://doi.org/10.5194/amt-14-5887-2021, 2021
Short summary
Short summary
In this study, we present measurements of carbon dioxide, methane and carbon monoxide from a recently established site in Gobabeb, Namibia. Gobabeb is the first site observing these gases on the African mainland and improves the global coverage of measurement sites. Gobabeb is a hyperarid desert site, offering unique characteristics. Measurements started 2015 as part of the COllaborative Carbon Column Observing Network. We compare our results with other datasets and find a good agreement.
René Stübi, Herbert Schill, Jörg Klausen, Eliane Maillard Barras, and Alexander Haefele
Atmos. Meas. Tech., 14, 5757–5769, https://doi.org/10.5194/amt-14-5757-2021, https://doi.org/10.5194/amt-14-5757-2021, 2021
Short summary
Short summary
In the first half of the 20th century, Prof. Dobson developed an instrument to measure the ozone column. Around 50 of these Dobson instruments, manufactured in the second half of the 20th century, are still used today to monitor the state of the ozone layer. Started in 1926, the Arosa series was, until recently, based on manually operated Dobsons. To ensure its future operation, a fully automated version of the Dobson has been developed. This well-working automated system is described here.
Timon Hummel, Christian Meister, Corneli Keim, Jasper Krauser, and Mark Wenig
Atmos. Meas. Tech., 14, 5459–5472, https://doi.org/10.5194/amt-14-5459-2021, https://doi.org/10.5194/amt-14-5459-2021, 2021
Short summary
Short summary
The impact of heterogeneous scene radiance affects the quality of trace gas retrieval products of Earth observation imaging spectrometers. This effect can be mitigated by introducing on-board hardware solutions called slit homogenizers, which scramble the light entering the instrument and thereby make it insensitive to Earth scene contrast. Here we present a comprehensive modeling of the slit homogenizer present in the Sentinel-5/UVNS instrument and quantify the spectral performance.
Quentin Errera, Emmanuel Dekemper, Noel Baker, Jonas Debosscher, Philippe Demoulin, Nina Mateshvili, Didier Pieroux, Filip Vanhellemont, and Didier Fussen
Atmos. Meas. Tech., 14, 4737–4753, https://doi.org/10.5194/amt-14-4737-2021, https://doi.org/10.5194/amt-14-4737-2021, 2021
Short summary
Short summary
ALTIUS is a micro-satellite which will measure the distribution of the ozone layer. Micro-satellites are intended to be cost-effective, but does this make the ALTIUS measurements any less valuable? To answer this, we simulated ALTIUS data and measured how it could constrain a model of the ozone layer; we then compared these results with those obtained from the state-of-the-art NASA Aura MLS satellite ozone measurements. The outcome shows us that the ALTIUS
budgetinstrument is indeed valuable.
Scott M. Spuler, Matthew Hayman, Robert A. Stillwell, Joshua Carnes, Todd Bernatsky, and Kevin S. Repasky
Atmos. Meas. Tech., 14, 4593–4616, https://doi.org/10.5194/amt-14-4593-2021, https://doi.org/10.5194/amt-14-4593-2021, 2021
Short summary
Short summary
Continuous water vapor and temperature profiles are critically needed for improved understanding of the lower atmosphere and potential advances in weather forecasting skill. To address this observation need, an active remote sensing technology based on a diode-laser-based lidar architecture is being developed. We discuss the details of the lidar architecture and analyze how it addresses a national-scale profiling network's need to provide continuous thermodynamic observations.
Bo Galle, Santiago Arellano, Nicole Bobrowski, Vladimir Conde, Tobias P. Fischer, Gustav Gerdes, Alexandra Gutmann, Thorsten Hoffmann, Ima Itikarai, Tomas Krejci, Emma J. Liu, Kila Mulina, Scott Nowicki, Tom Richardson, Julian Rüdiger, Kieran Wood, and Jiazhi Xu
Atmos. Meas. Tech., 14, 4255–4277, https://doi.org/10.5194/amt-14-4255-2021, https://doi.org/10.5194/amt-14-4255-2021, 2021
Short summary
Short summary
Measurements of volcanic gases are important for geophysical research, risk assessment and environmental impact studies. Some gases, like SO2 and BrO, may be studied from the ground at a safe distance using remote sensing techniques. Many other gases require in situ access to the gas plume. Here, a drone may be an attractive alternative. This paper describes a drone specially adapted for volcanic gas studies and demonstrates its use in a field campaign at Manam volcano in Papua New Guinea.
Jia Su, M. Patrick McCormick, Matthew S. Johnson, John T. Sullivan, Michael J. Newchurch, Timothy A. Berkoff, Shi Kuang, and Guillaume P. Gronoff
Atmos. Meas. Tech., 14, 4069–4082, https://doi.org/10.5194/amt-14-4069-2021, https://doi.org/10.5194/amt-14-4069-2021, 2021
Short summary
Short summary
A new technique using a three-wavelength differential absorption lidar (DIAL) technique based on an optical parametric oscillator (OPO) laser is proposed to obtain more accurate measurements of NO2. The retrieval uncertainties in aerosol extinction using the three-wavelength DIAL technique are reduced to less than 2 % of those when using the two-wavelength DIAL technique. Hampton University (HU) lidar NO2 profiles are compared with simulated data from the WRF-Chem model, and they agree well.
Carly Staebell, Kang Sun, Jenna Samra, Jonathan Franklin, Christopher Chan Miller, Xiong Liu, Eamon Conway, Kelly Chance, Scott Milligan, and Steven Wofsy
Atmos. Meas. Tech., 14, 3737–3753, https://doi.org/10.5194/amt-14-3737-2021, https://doi.org/10.5194/amt-14-3737-2021, 2021
Short summary
Short summary
Given the high global warming potential of CH4, the identification and subsequent reduction of anthropogenic CH4 emissions presents a significant opportunity for climate change mitigation. Satellites are an integral piece of this puzzle, providing data to quantify emissions at a variety of spatial scales. This work presents the spectral calibration of MethaneAIR, the airborne instrument used as a test bed for the forthcoming MethaneSAT satellite.
Nicholas M. Deutscher, Travis A. Naylor, Christopher G. R. Caldow, Hamish L. McDougall, Alex G. Carter, and David W. T. Griffith
Atmos. Meas. Tech., 14, 3119–3130, https://doi.org/10.5194/amt-14-3119-2021, https://doi.org/10.5194/amt-14-3119-2021, 2021
Short summary
Short summary
This work describes the performance of an open-path measurement system for greenhouse gases in an extended field trial. The instrument obtained measurement repeatability of 0.1 % or better for CO2 and CH4 measurements over a 1.55 km one-way pathway. Comparison to co-located in situ measurements allows characterisation of biases relative to global reference scales. The research was done to show the applicability of the technique and its ability to detect atmospheric-relevant sources and sinks.
Sebastian Wolff, Gerhard Ehret, Christoph Kiemle, Axel Amediek, Mathieu Quatrevalet, Martin Wirth, and Andreas Fix
Atmos. Meas. Tech., 14, 2717–2736, https://doi.org/10.5194/amt-14-2717-2021, https://doi.org/10.5194/amt-14-2717-2021, 2021
Short summary
Short summary
We report on CO2 emissions of a coal-fired power plant derived from flight measurements performed with the IPDA lidar CHARM-F during the CoMet campaign in spring 2018. Despite the results being in broad agreement with reported emissions, we observe strong variations between successive flyovers. Using a high-resolution large eddy simulation, we identify strong atmospheric turbulence as the cause for the variations and recommend more favorable measurement conditions for future campaign planning.
Cited articles
Balling, P., Masika, P., Kren, P., and Dolezal, M.: Length and refractive
index measurement by Fourier transform interferometry, Meas. Sci.
Technol., 23, 1–13, https://doi.org/10.1088/0957-0233/23/9/094001, 2012.
Bass, A. M. and Paur, R. J.: The ultraviolet cross-sections of ozone. I. The
measurements, II – Results and temperature dependence, Atmospheric
ozone, Proceedings of the Quadrennial, 1, 606–616, 1985.
Dobson, G. M. B.: Forty Years: Research on Atmospheric Ozone at Oxford: a
History, Appl. Optics, 7, 387–405, 1968.
Gröbner, J., Schill, H., Egli, L., and Stübi, R.: Consistency of total column ozone measurements between the Brewer and Dobson spectroradiometers of the LKO Arosa and PMOD/WRC Davos, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2020-497, in review, 2021.
JCGM 100:2008(E): Evaluation of measurement data – Guide to the expression
of uncertainty in measurement, BIPM, JCGM, available at: https://www.bipm.org/en/publications/guides (last access: 18 May 2021), 2008.
Kerr, J., Mcelroy, C., and Olafson, R.: Measurements of ozone with the
Brewer ozone spectrophotometer, in: Quadrennial International Ozone
Symposium, 4–9 August 1980, Boulder, Colorado, USA, 74–79, 1981.
Köhler, U., Nevas, S., McConville, G., Evans, R., Smid, M., Stanek, M., Redondas, A., and Schönenborn, F.: Optical characterisation of three reference Dobsons in the ATMOZ Project – verification of G. M. B. Dobson's original specifications, Atmos. Meas. Tech., 11, 1989–1999, https://doi.org/10.5194/amt-11-1989-2018, 2018.
Komhyr, W. D., Mateer, C. L., and Hudson, R. D.: Effective Bass-Paur 1985
ozone absorption coefficients for use with Dobson ozone spectrophotometers,
J. Geophys. Res., 98, 20451–20465, 1993.
Redondas, A., Nevas, S., Berjón, A., Sildoja, M.-M., León-Luis, S. F., Carreño, V., and Santana-Díaz, D.: Wavelength calibration of Brewer spectrophotometer using a tunable pulsed laser and implications to the Brewer ozone retrieval, Atmos. Meas. Tech., 11, 3759–3768, https://doi.org/10.5194/amt-11-3759-2018, 2018.
Serdyuchenko, A., Gorshelev, V., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence, Atmos. Meas. Tech., 7, 625–636, https://doi.org/10.5194/amt-7-625-2014, 2014.
Šmíd, M.: amt-tups-data, Mendeley Data [data set], V1, https://doi.org/10.17632/58ky97926k.1, 2021.
Vanicek, K.: Differences between ground Dobson, Brewer and satellite TOMS-8, GOME-WFDOAS total ozone observations at Hradec Kralove, Czech, Atmos. Chem. Phys., 6, 5163–5171, https://doi.org/10.5194/acp-6-5163-2006, 2006.
Vaníček, K., Metelka, L., Skřivánková, P., and Staněk, M.: Dobson, Brewer, ERA-40 and ERA-Interim original and merged total ozone data sets – evaluation of differences: a case study, Hradec Králové (Czech), 1961–2010, Earth Syst. Sci. Data, 4, 91–100, https://doi.org/10.5194/essd-4-91-2012, 2012.
Short summary
We designed and developed a tuneable and portable radiation source (TuPS) to provide a reference wavelength scale, with a bandwidth of emitted radiation of 0.13 nm and uncertainty in wavelength of 0.02 nm. TuPS was successfully used for the in-field characterization of 14 Dobson spectrophotometers in campaigns in Europe. The line spread functions of Dobsons measured by TuPS in conjunction with the cross-sections from IUP improves the consistency between the Dobson and Brewer from 3 % to 1 %.
We designed and developed a tuneable and portable radiation source (TuPS) to provide a reference...