Articles | Volume 14, issue 5
https://doi.org/10.5194/amt-14-3597-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-3597-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ observations of stratospheric HCl using three-mirror integrated cavity output spectroscopy
Jordan Wilkerson
CORRESPONDING AUTHOR
Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138, USA
David S. Sayres
Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138, USA
Jessica B. Smith
Department of Earth and Planetary Sciences, Harvard University, 12
Oxford Street, Cambridge, MA 02138, USA
Norton Allen
Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138, USA
Marco Rivero
Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138, USA
Mike Greenberg
Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138, USA
Terry Martin
Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138, USA
James G. Anderson
Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138, USA
Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138, USA
Department of Earth and Planetary Sciences, Harvard University, 12
Oxford Street, Cambridge, MA 02138, USA
Related authors
No articles found.
Benjamin Wade Clouser, Carly Cyd KleinStern, Adrien Desmoulin, Clare E. Singer, Jason M. St. Clair, Thomas F. Hanisco, David S. Sayres, and Elisabeth J. Moyer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1190, https://doi.org/10.5194/egusphere-2025-1190, 2025
Short summary
Short summary
Water molecules comes in several varieties, of which H216O is the most common. These varieties behave differently enough under freezing to create strong changes in the ratio of heavy to light water molecules. Here we compare observations of these ratios from satellites and high-altitude airborne instruments. These observations provide information about how air reaches the upper parts of the atmosphere, so it is important to reconcile difference between different modes of observations.
Andrea E. Gordon, Cameron R. Homeyer, Jessica B. Smith, Rei Ueyama, Jonathan M. Dean-Day, Elliot L. Atlas, Kate Smith, Jasna V. Pittman, David S. Sayres, David M. Wilmouth, Apoorva Pandey, Jason M. St. Clair, Thomas F. Hanisco, Jennifer Hare, Reem A. Hannun, Steven Wofsy, Bruce C. Daube, and Stephen Donnelly
Atmos. Chem. Phys., 24, 7591–7608, https://doi.org/10.5194/acp-24-7591-2024, https://doi.org/10.5194/acp-24-7591-2024, 2024
Short summary
Short summary
In situ airborne observations of ongoing tropopause-overshooting convection and an above-anvil cirrus plume from the 31 May 2022 flight of the Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) field campaign are examined. Upper troposphere and lower stratosphere composition changes are evaluated along with possible contributing dynamical and physical processes. Measurements reveal multiple changes in air mass composition and stratospheric hydration throughout the flight.
Corey E. Clapp, Jessica B. Smith, Kristopher M. Bedka, and James G. Anderson
Atmos. Chem. Phys., 23, 3279–3298, https://doi.org/10.5194/acp-23-3279-2023, https://doi.org/10.5194/acp-23-3279-2023, 2023
Short summary
Short summary
Convection in the Asian monsoon provides an important pathway for the transport of boundary layer and tropospheric air, and potentially pollution and chemically active species, into the stratosphere. We analyzed the distribution of the fastest and deepest convection with geostationary satellite detections for the months of May through October of 2017. We find significant differences in the geographic and monthly distributions of cross-tropopause convection across the Asian monsoon region.
Cited articles
Ackerman, M., Frimout, D., Girard, A., Gottignies, M., and Muller, C.:
Stratospheric HCl from infrared spectra, Geophys. Res. Lett., 3, 81–83,
https://doi.org/10.1029/GL003i002p00081, 1976.
Allen, N.: nthallen/icosfit: icosfit V4.2.5 (Version V4.2.5), Zenodo,
https://doi.org/10.5281/zenodo.3903723, 2020.
Anderson, J. G., Wilmouth, D. M., Smith, J. B., and Sayres, D. S.: UV Dosage
levels in summer: Increased risk of ozone loss from convectively injected
water vapor, Science, 337, 835–839, https://doi.org/10.1126/science.1222978, 2012.
Anderson, J. G., Weisenstein, D. K., Bowman, K. P., Homeyer, C. R., Smith, J. B.,
Wilmouth, D. M., Sayres, D. S., Klobas, J. E., Leroy, S. E., Dykema, J. A., and
Wofsy, S. C.: Stratospheric ozone over the United States in summer linked to
observations of convection and temperature via chlorine and bromine
catalysis, P. Natl. Acad. Sci. USA, 114, E4905–E4913, https://doi.org/10.1073/pnas.1619318114,
2017.
Bonne, G. P., Stimpfle, R. M., Cohen, R. C., Voss, P. B., Perkins, K. K.,
Anderson, J. G., Salawitch, R. J., Elkins, J. W., Dutton, G. S., Jucks, K. W.,
and Toon, G. C.: An examination of the inorganic chlorine budget in the lower
stratosphere, J. Geophys. Res.-Atmos., 105, 1957–1971,
https://doi.org/10.1029/1999JD900996, 2000.
Borgentun, C., Frez, C., Briggs, R. M., Fradet, M., and Forouhar, S.:
Single-mode high-power interband cascade lasers for mid-infrared absorption
spectroscopy, Opt. Express, 23, 2446–2450,
https://doi.org/10.1364/OE.23.002446, 2015.
Christensen, L. E., Webster, C. R., and Yang, R. Q.: Aircraft and balloon in
situ measurements of methane and hydrochloric acid using interband cascade
lasers, Appl. Optics, 46, 1132–1138, https://doi.org/10.1364/ao.46.001132,
2007.
Clapp, C. E., Smith, J. B., Bedka, K. M., and Anderson, J. G.: Identifying Source
Regions and the Distribution of Cross-Tropopause Convective Outflow Over
North America During the Warm Season, JGR Atmospheres, 127, 13750–13762,
https://doi.org/10.1029/2019JD031382, 2019.
Diffenbaugh, N. S., Scherer, M., and Trapp, R. J.: Robust increases in severe
thunderstorm environments in response to greenhouse forcing, P. Natl. Acad. Sci. USA, 110,
163661–16366, https://doi.org/10.1073/pnas.1307758110, 2013.
Dyroff, C., Zahn, A., Sanati, S., Christner, E., Rauthe-Schöch, A., and Schuck, T. J.: Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment, Atmos. Meas. Tech., 7, 743–755, https://doi.org/10.5194/amt-7-743-2014, 2014.
European Centre for Medium-Range Weather Forecast (ECMWF): The ERA-Interim
reanalysis dataset, available at:
https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim,
(last access: 15 June 2020), Copernicus Climate Change Service (C3S), 2011.
Farmer, C. B., Raper, O. F., and Norton, R. H.: Spectroscopic detection and
vertical distribution of HCl in the troposphere and stratosphere, Geophys.
Res. Lett., 3, 13–16, https://doi.org/10.1029/GL003i001p00013, 1976.
Froidevaux, L., Jiang, Y. B., Lambert, A., Livesey, N. J., Read, W. G., Waters,
J. W., Fuller, R. A., Marcy, T. P., Popp, R. S., Gao, R. S., Fahey, D. W., Jucks,
K. W., Stachnik, R. A., Toon, G. C., Christensen, L. E., Webster, C. R., Bernath,
P. F., Boone, C. D., Walker, K. A., Pumphrey, H. C., Harwood, R. S., Manney,
G. L., Schwartz, M. J., Daffer, W. H., Drouin, B. J., Cofield, R. E., Cuddy,
D. T., Jarnot, R. F., Knosp, B. W., Perun, V. S., Snyder, W. V., Stek, P. C.,
Thurstans, R. P., and Wagner, P. A.: Validation of Aura Microwave Limb Sounder
HCl measurements, J. Geophys. Res., 113, D15S25,
https://doi.org/10.1029/2007JD009025, 2008.
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J.-M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M.-A.H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Császár, A. G., Devi, V. M., Furtenbacher, T., Harrison, J. J., Hartmann, J.-M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Vander Auwera, J., Wagner, G., Wilzewski, J., Wcisło, P., Yu, S., and Zak, E. J.: The HITRAN2016 molecular spectroscopic database, J.
Quant. Spectrosc. Ra., 203, 3–69, https://doi.org/10.1016/j.jqsrt.2017.06.038,
2017.
Hagen, C. L., Lee, B. C., Franka, I. S., Rath, J. L., VandenBoer, T. C., Roberts, J. M., Brown, S. S., and Yalin, A. P.: Cavity ring-down spectroscopy sensor for detection of hydrogen chloride, Atmos. Meas. Tech., 7, 345–357, https://doi.org/10.5194/amt-7-345-2014, 2014.
Hamamatsu: Characteristics and use of infrared detectors, available at: https://mmrc.caltech.edu/FTIR/Literature/General/Hamamatus IR dectors.pdf (last access: 20 May 2020), 2011.
Hanisco, T. F., Moyer, E. J., Weinstock, E. M., St. Clair, J. M., Sayres, D. S.,
Smith, J. B., Lockwood, R., Anderson, J. G., Dessler, A. E., Keutsch, F. N.,
Spackman, J. R., Read, W. G., and Bui, T. P.: Observations of deep convective
influence on stratospheric water vapor and its isotopic composition,
Geophys. Res. Lett., 34, L04814, https://doi.org/10.1029/2006GL027899, 2007.
Keith, D.W.: Geoengineering the Climate: History and Prospect, Annu. Rev.
Energ. Environ., 25, 245–284, https://doi.org/10.1146/annurev.energy.25.1.245,
2000.
Kräuchi, A., Philipona, R., Romanens, G., Hurst, D. F., Hall, E. G., and Jordan, A. F.: Controlled weather balloon ascents and descents for atmospheric research and climate monitoring, Atmos. Meas. Tech., 9, 929–938, https://doi.org/10.5194/amt-9-929-2016, 2016.
Leen, J. B. and O'Keefe, A.: Optical re-injection in cavity-enhanced absorption
spectroscopy, Rev. Sci. Instrum., 85, 093101,
https://doi.org/10.1063/1.4893972, 2014.
Li, G., Gordon, I. E., Bernath, P. F., and Rothman, L. S.: Direct fit of
experimental ro-vibrational intensities to the dipole moment function:
Application to HCl, J. Quant. Spectrosc. Ra., 112, 1543–1550,
https://doi.org/10.1016/j.jqsrt.2011.03.014, 2011.
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A.,
Manney, G. L., Millán Valle, L. F., Pumphrey, H. C., Santee, M. L.,
Schwartz, M. J., Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Martinez,
E., and Lay, R. R.: Earth Observing System (EOS) Aura Microwave Limb Sounder
(MLS) Version 4.2x Level 2 and 3 data quality and description document, Jet
Propulsion Laboratory, available at: https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf, last access: 20 November 2020.
Los Gatos Research (LGR): Homepage, available at: https://www.lgrinc.com, last access: 27 May, 2020.
Mahieu, E., Chipperfield, M.P., Noholt, J., Reddmann, T., Anderson, J.,
Bernath, P. F., Blumenstock, T., Coffey, M. T., Dhomse, S. S., Feng, W.,
Franco, B., Froidevaux, L., Griffith, D. W. T., Hannigan, J. W., Hase, F.,
Hossaini, R., Jones, N. B., Morino, I., Murata, I., Nakajima, H., Palm, M.,
Paton-Walsh, C., Russell III, J. M., Schneider, M., Servais, C., Smale, D.,
and Walker, K.: Recent Northern Hemisphere stratospheric HCl increase due to
atmospheric circulation changes, Nature, 515, 104–107,
https://doi.org/10.1038/nature13857, 2014.
Marcy, T. P., Fahey, D. W., Gao, R. S., Popp, P. J., Richard, E. C., Thompson,
T. L., Rosenlof, K. H., Ray, E. A., Salawitch, R. J., Atherton, C. S., Bergmann,
D. J., Ridley, B. A., Weinheimer, A. J., Loewenstein, M., Weinstock, E. M., and
Mahoney, M. J.: Quantifying Stratospheric Ozone in the Upper Troposphere with
in Situ Measurements of HCl, Science, 34, 261–265,
https://doi.org/10.1126/science.1093418, 2004.
Marcy, T. P., Gao, R. S., Northway, M. J., Popp, P. J., Stark, H., and Fahey,
D. W.: Using chemical ionization mass spectrometry for detection of HNO, HCl,
and ClONO2 in the atmosphere, Int. J. Mass Spectrom., 243, 63–70,
https://doi.org/10.1016/j.ijms.2004.11.012, 2005.
Molina, M. J. and Rowland, F. S.: Stratospheric sink for chlorofluoromethanes:
chlorine atom-catalysed destruction of ozone, Nature, 249, 810–824,
https://doi.org/10.1038/249810a0, 1974.
Montzka, S., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S.,
Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, J. D., Rigby, M.,
Manning, A. J., Hu, L., Moore, F., Miller, B. R., and Elkinds J. W.: An
unexpected and persistent increase in global emissions of ozone-depleting
CFC-11, Nature, 557, 413–417, https://doi.org/10.1038/s41586-018-0106-2, 2018.
NASA: AVE 2005 WB-57 files, available at:
https://espo.nasa.gov/crystalface/archive/browse/ave_0506/WB57 (last access: 6 March 2020), 2005.
NOAA: Ozonesonde Boulder, Colorado 100 Meter Average Files, available at: https://www.esrl.noaa.gov/gmd/aftp/data/ozwv/Ozonesonde/Boulder, Colorado/100 Meter Average Files/,
(last access: 15 December 2020), 2018.
Ouyang, B. and Jones. R. L.: Understanding the sensitivity of cavity-enhanced
absorption spectroscopy: pathlength enhancement versus noise suppression,
Appl. Phys. B, 109, 581–591, https://doi.org/10.1007/s00340-012-5178-3,
2012.
Roberts, J. M., Veres, P., Warneke, C., Neuman, J. A., Washenfelder, R. A., Brown, S. S., Baasandorj, M., Burkholder, J. B., Burling, I. R., Johnson, T. J., Yokelson, R. J., and de Gouw, J.: Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions, Atmos. Meas. Tech., 3, 981–990, https://doi.org/10.5194/amt-3-981-2010, 2010.
Sayres, D. S., Moyer, E. J., Hanisco, T. F., St. Clair, J. M., Keutsch, F. N.,
O'Brien, A., Allen, N. T., Lapson, L., Demusz, J. N., Rivero, M., Martin, T.,
Greenberg, M., Tuozzolo, C., Engel, G. S., Kroll, J. H., Paul, J. B., and
Anderson J. G.: A new cavity based absorption instrument for detection of
water isotopologues in the upper troposphere and lower stratosphere, Rev.
Sci. Instrum., 80, 044102, https://doi.org/10.1063/1.3117349, 2009.
Scott, D. C., Herman, R. L., Webster, C. R., May, R. D., Flesch, G. J., and
Moyer, E. J.: Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for
in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2 from balloon
or remotely piloted aircraft platforms, Appl. Opt., 38, 4609–4622,
https://doi.org/10.1364/AO.38.004609, 1999.
SilcoTek: Chemical Compatibility with SilcoTek Coatings, available at:
https://www.silcotek.com/coating-compatibility, last access: 28 May 2020.
Smith, J. B., Wilmouth, D., Bedka, K. M., Bowman, K. B., Homeyer, C. R., Dykema,
J. A., Sargent, M. R., Clapp, C. E., Leroy, S. S., Sayres, D. S., Dean-Day, J. M.,
Bui, T. P., and Anderson, J. G.: A case study of convectively sourced water
vapor observed in the overworld stratosphere over the United States, J.
Geophys. Res.-Atmos., 122, 9529–9554, https://doi.org/10.1002/2017JD026831,
2017.
Solomon, S.: Stratospheric Ozone Depletion: A review of concepts and
history, Rev. Geophys., 37, 275–316,
https://doi.org/10.1029/1999RG900008, 1999.
Tiger Optics: Homepage, available at: https://www.tigeroptics.com, last access: 27 May 2020.
Tilmes, S., Garcia, R. R., Kinnison, D. E., Gettelman, A., and Rasch, P. J.:
Impact of geoengineered aerosols on the troposphere and stratosphere, J.
Geophys. Res., 114, D12305, https://doi.org/10.1029/2008JD011420, 2009.
Vurgaftmen, I., Weih, R., Kamp, M., Meyer, J. R., Canedy, C. L., Kim, C. S.,
Kim, M., Bewley, W. W., Merritt, C. D., Abell, J., and Höfling, S.:
Interband cascade lasers, J. Phys. D: Appl. Phys., 48, 123001,
https://doi.org/10.1088/0022-3727/48/12/123001, 2015.
Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Perun, V. S., Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra, K. M., Chavez, M. C., Chen, G.-S., Chudasama, B. V., Dodge, R., Fuller, R. A., Girard, M. A., Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C., Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala, D. M., Quintero, O., Scaff, D. M., Van Snyder, W., Tope, M. C., Wagner, P. A., and Walch, M. J.: The Earth Observing System Microwave Limb Sounder (EOS
MLS) on the aura satellite, IEEE Trans. Geosci. Remote Sens., 44, 1075–1092,
https://doi.org/10.1109/TGRS.2006.873771, 2006.
Webster, C. R. May, R. D., Trimble, C. A., Chave, R. G., and Kendall, J.:
Aircraft (ER-2) Laser Infrared Absorption Spectrometer (ALIAS) for In-situ
Stratospheric Measurements of HCl, N2O, CH4, NO2, and
HNO3, Appl. Optics, 33, 454–472,
https://doi.org/10.1364/AO.33.000454, 1994.
Weinstock, E. M., Pittman, J. V., Sayres, D. S., Smith, J. B., Anderson, J. G.,
Wofsy, S. C., Xueref, I., Gerbig, C., Daube, B. C., Pfister, L., Richard,
E. C., Ridley, B. A., Weinheimer, A. J., Jost, H.-J., Lopez, J. P., Loewenstein,
M., and Thompson, L.: Quantifying the impact of the North American monsoon
and deep midlatitude convection on the subtropical lowermost stratosphere
using in situ measurements, J. Geophys. Res., 112, D18310,
https://doi.org/10.1029/2007JD008554, 2007.
Wilkerson, J.: Harvard University Stratospheric Chemistry
Experiment data set, Harvard Dataverse, V1 [data set], https://doi.org/10.7910/DVN/PMLPRR, 2021.
Wilkerson, J., Dobosy, R., Sayres, D. S., Healy, C., Dumas, E., Baker, B., and Anderson, J. G.: Permafrost nitrous oxide emissions observed on a landscape scale using the airborne eddy-covariance method, Atmos. Chem. Phys., 19, 4257–4268, https://doi.org/10.5194/acp-19-4257-2019, 2019.
Williams, W. J., Kosters, J. J., Goldman, A., and Murcray, D. G.:
Measurement of the Stratospheric Mixing Ratio of HCl Using Infrared
Absorption Technique, Geophys. Res. Lett., 3, 383–385, 1976.
Witinski, M. F., Sayres, D. S., and Anderson, J. G.: High precision methane
isotopologue ratio measurements at ambient mixing ratios using integrated
cavity output spectroscopy, Applied Physics B, 102, 375–380,
https://doi.org/10.1007/s00340-010-3957-2, 2010.
WMO (World Meteorological Organization): Scientific Assessment of Ozone
Depletion: 2018, Global Ozone Research and Monitoring Project – Report No.
58, Geneva, Switzerland, 588 pp., 2018.
Short summary
The ozone layer in the stratosphere protects life from harmful UV light, but chlorine-based pollution threatens to damage it. We developed an instrument that couples a laser with highly reflective mirrors and advanced electronics to measure an important residue of this pollution: hydrogen chloride. Our instrument has an improved, more modern layout that we successfully tested in flight. This paves the way for future, advanced techniques that seek to evaluate the health of Earth’s ozone layer.
The ozone layer in the stratosphere protects life from harmful UV light, but chlorine-based...