Articles | Volume 14, issue 1
Atmos. Meas. Tech., 14, 511–529, 2021
https://doi.org/10.5194/amt-14-511-2021
Atmos. Meas. Tech., 14, 511–529, 2021
https://doi.org/10.5194/amt-14-511-2021

Research article 25 Jan 2021

Research article | 25 Jan 2021

Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study

Kamil Mróz et al.

Related authors

Combination Analysis of Multi-Wavelength, Multi-Parameter Radar Measurements for Snowfall
Mariko Oue, Pavlos Kollias, Sergey Y. Matrosov, Alessandro Battaglia, and Alexander V. Ryzhkov
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-78,https://doi.org/10.5194/amt-2021-78, 2021
Preprint under review for AMT
Short summary
snowScatt 1.0: consistent model of microphysical and scattering properties of rimed and unrimed snowflakes based on the self-similar Rayleigh–Gans approximation
Davide Ori, Leonie von Terzi, Markus Karrer, and Stefan Kneifel
Geosci. Model Dev., 14, 1511–1531, https://doi.org/10.5194/gmd-14-1511-2021,https://doi.org/10.5194/gmd-14-1511-2021, 2021
Short summary
First Light Multi-Frequency Observations with a G-band radar
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-493,https://doi.org/10.5194/amt-2020-493, 2020
Revised manuscript accepted for AMT
Short summary
Evaluation of the reflectivity calibration of W-band radars based on observations in rain
Alexander Myagkov, Stefan Kneifel, and Thomas Rose
Atmos. Meas. Tech., 13, 5799–5825, https://doi.org/10.5194/amt-13-5799-2020,https://doi.org/10.5194/amt-13-5799-2020, 2020
Short summary
Linkage among ice crystal microphysics, mesoscale dynamics, and cloud and precipitation structures revealed by collocated microwave radiometer and multifrequency radar observations
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020,https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A new global grid-based weighted mean temperature model considering vertical nonlinear variation
Peng Sun, Suqin Wu, Kefei Zhang, Moufeng Wan, and Ren Wang
Atmos. Meas. Tech., 14, 2529–2542, https://doi.org/10.5194/amt-14-2529-2021,https://doi.org/10.5194/amt-14-2529-2021, 2021
Short summary
Monitoring sudden stratospheric warmings using radio occultation: a new approach demonstrated based on the 2009 event
Ying Li, Gottfried Kirchengast, Marc Schwärz, Florian Ladstädter, and Yunbin Yuan
Atmos. Meas. Tech., 14, 2327–2343, https://doi.org/10.5194/amt-14-2327-2021,https://doi.org/10.5194/amt-14-2327-2021, 2021
Short summary
LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics – Part 1: Theoretical framework
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2065–2093, https://doi.org/10.5194/amt-14-2065-2021,https://doi.org/10.5194/amt-14-2065-2021, 2021
Short summary
LiSBOA (LiDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics – Part 2: Applications to lidar measurements of wind turbine wakes
Stefano Letizia, Lu Zhan, and Giacomo Valerio Iungo
Atmos. Meas. Tech., 14, 2095–2113, https://doi.org/10.5194/amt-14-2095-2021,https://doi.org/10.5194/amt-14-2095-2021, 2021
Short summary
Estimation of the height of the turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam
Viktor A. Banakh, Igor N. Smalikho, and Andrey V. Falits
Atmos. Meas. Tech., 14, 1511–1524, https://doi.org/10.5194/amt-14-1511-2021,https://doi.org/10.5194/amt-14-1511-2021, 2021

Cited articles

Atlas, D., Srivastava, R. C., and Sekhon, R. S.: Doppler radar characteristics of precipitation at vertical incidence, Rev. Geophys., 11, 1–35, https://doi.org/10.1029/RG011i001p00001, 1973. a, b
Battaglia, A. and Kollias, P.: Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds, Atmos. Meas. Tech., 12, 3335–3349, https://doi.org/10.5194/amt-12-3335-2019, 2019. a
Battaglia, A., Kummerow, C., Shin, D.-B., and Williams, C.: Toward characterizing the effect of radar bright bands on microwave brightness temperatures, J. Atmos. Ocean, Technol., 20, 856–871, https://doi.org/10.1175/1520-0426(2003)020<0856:CMBTBR>2.0.CO;2, 2003. a
Battaglia, A., Kollias, P., Dhillon, R., , Roy, R., Tanelli, S., Lamer, K., Grecu, M., Lebsock, M., Watters, D., Mroz, K., Heymsfield, G., Li, L., and Furukawa, K.: Space-borne cloud and precipitation radars: status, challenges and ways forward, Rev. Geophys., 58, e2019RG000686, https://doi.org/10.1029/2019RG000686, 2020a. a, b
Battaglia, A., Tanelli, S., Tridon, F., Kneifel, S., Leinonen, J., and Kollias, P.: Satellite precipitation measurement, vol. 67 of Adv.Global Change Res., chap. Triple-frequency radar retrievals, Springer, Cham, Switzerland, ISBN 978-3-030-24567-2, 2020b. a
Download
Short summary
The article examines the relationship between the characteristics of rain and the properties of the ice cloud from which the rain originated. Our results confirm the widely accepted assumption that the mass flux through the melting zone is well preserved with an exception of extreme aggregation and riming conditions. Moreover, it is shown that the mean (mass-weighted) size of particles above and below the melting zone is strongly linked, with the former being on average larger.