Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-7153-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-7153-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models
Oscar S. Sandvik
Department of Physics, Lund University, Lund, 22100, Sweden
Johan Friberg
CORRESPONDING AUTHOR
Department of Physics, Lund University, Lund, 22100, Sweden
Moa K. Sporre
Department of Physics, Lund University, Lund, 22100, Sweden
Bengt G. Martinsson
Department of Physics, Lund University, Lund, 22100, Sweden
Related authors
Bengt G. Martinsson, Johan Friberg, Oscar S. Sandvik, and Moa K. Sporre
Atmos. Chem. Phys., 22, 3967–3984, https://doi.org/10.5194/acp-22-3967-2022, https://doi.org/10.5194/acp-22-3967-2022, 2022
Short summary
Short summary
Large amounts of wildfire smoke reached the stratosphere in 2017. The literature on stratospheric aerosol is mainly based on horizontally viewing sensors that saturate in dense smoke. Using also a vertically viewing sensor with orders of magnitude shorter path in the smoke, we show that the horizontally viewing sensors miss a dramatic exponential decline of the aerosol load with a half-life of 10 d, where 80 %–90 % of smoke is lost. We attribute the decline to photolytic loss of organic aerosol.
Bengt G. Martinsson, Johan Friberg, and Moa K. Sporre
Atmos. Chem. Phys., 25, 10677–10690, https://doi.org/10.5194/acp-25-10677-2025, https://doi.org/10.5194/acp-25-10677-2025, 2025
Short summary
Short summary
Highly variable stratospheric aerosol bears great importance for Earth's climate. The 1-year average aerosol load from the 2022 volcanic eruption in Hunga Tonga is the highest since the 1991 Mt. Pinatubo eruption. The usual volcanic aerosol precursor gas (SO2) mass was not sufficient to explain the aerosol load. Intense volcanism–sea interaction amplified the eruption, and sea salt emission forms a plausible explanation for the high aerosol loading.
Emma Axebrink, Moa K. Sporre, and Johan Friberg
Atmos. Chem. Phys., 25, 2047–2059, https://doi.org/10.5194/acp-25-2047-2025, https://doi.org/10.5194/acp-25-2047-2025, 2025
Short summary
Short summary
We investigate the importance of using high-vertical-resolution (HR) SO2 data when simulating volcanic eruptions' impact on the stratospheric aerosol load and climate, using WACCM, and compare simulations with aerosol observations from CALIOP. Simulations with HR SO2 data match the observations well, whereas simulations with the model's default low-resolution (LR) data underestimate the aerosol load by ~ 50 %. The resulting climate cooling is twice as high for the HR than the LR SO2 data.
Carl Svenhag, Pontus Roldin, Tinja Olenius, Robin Wollesen de Jonge, Sara Blichner, Daniel Yazgi, and Moa Sporre
EGUsphere, https://doi.org/10.5194/egusphere-2024-3626, https://doi.org/10.5194/egusphere-2024-3626, 2024
Short summary
Short summary
This study investigates the model representation of how particles are formed and grow in the atmosphere. Using modeled and observed data from two boreal forest stations in 2018, we identify key factors for NPF to improve particle-climate predictions in the global EC-Earth3 model. Comparisons with the detailed ADCHEM model show that adding ammonia improves particle growth predictions, though EC-Earth3 still highly underestimates the number of particles during warmer months.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Johan Friberg, Bengt G. Martinsson, and Moa K. Sporre
Atmos. Chem. Phys., 23, 12557–12570, https://doi.org/10.5194/acp-23-12557-2023, https://doi.org/10.5194/acp-23-12557-2023, 2023
Short summary
Short summary
We study the short- and long-term stratospheric impact of smoke from the massive Australian wildfires in Dec 2019–Jan 2020 using four satellite sensors. Smoke entered the stratosphere rapidly via transport by firestorms, as well as weeks after the fires. The smoke particle properties evolved over time together with rapidly decreasing stratospheric aerosol load, suggesting photolytic loss of organics in the smoke particles. The depletion rate was estimated to a half-life (e folding) of 10 (14) d.
Bengt G. Martinsson, Johan Friberg, Oscar S. Sandvik, and Moa K. Sporre
Atmos. Chem. Phys., 22, 3967–3984, https://doi.org/10.5194/acp-22-3967-2022, https://doi.org/10.5194/acp-22-3967-2022, 2022
Short summary
Short summary
Large amounts of wildfire smoke reached the stratosphere in 2017. The literature on stratospheric aerosol is mainly based on horizontally viewing sensors that saturate in dense smoke. Using also a vertically viewing sensor with orders of magnitude shorter path in the smoke, we show that the horizontally viewing sensors miss a dramatic exponential decline of the aerosol load with a half-life of 10 d, where 80 %–90 % of smoke is lost. We attribute the decline to photolytic loss of organic aerosol.
Sara Marie Blichner, Moa Kristina Sporre, and Terje Koren Berntsen
Atmos. Chem. Phys., 21, 17243–17265, https://doi.org/10.5194/acp-21-17243-2021, https://doi.org/10.5194/acp-21-17243-2021, 2021
Short summary
Short summary
In this study we quantify how a new way of modeling the formation of new particles in the atmosphere affects the estimated cooling from aerosol–cloud interactions since pre-industrial times. Our improved scheme merges two common approaches to aerosol modeling: a sectional scheme for treating early growth and the pre-existing modal scheme in NorESM. We find that the cooling from aerosol–cloud interactions since pre-industrial times is reduced by 10 % when the new scheme is used.
Sara M. Blichner, Moa K. Sporre, Risto Makkonen, and Terje K. Berntsen
Geosci. Model Dev., 14, 3335–3359, https://doi.org/10.5194/gmd-14-3335-2021, https://doi.org/10.5194/gmd-14-3335-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions are the largest contributor to climate forcing uncertainty. In this study we combine two common approaches to aerosol representation in global models: a sectional scheme, which is closer to first principals, for the smallest particles forming in the atmosphere and a log-modal scheme, which is faster, for the larger particles. With this approach, we improve the aerosol representation compared to observations, while only increasing the computational cost by 15 %.
Cited articles
Andersson, S. M., Martinsson, B. G., Friberg, J., Brenninkmeijer, C. A. M.,
Rauthe-Schöch, A., Hermann, M., van Velthoven, P. F. J., and Zahn, A.:
Composition and evolution of volcanic aerosol from eruptions of Kasatochi,
Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC
observations, Atmos. Chem. Phys., 13, 1781–1796,
https://doi.org/10.5194/acp-13-1781-2013, 2013.
Andersson, S. M., Martinsson, B. G., Vernier, J. P., Friberg, J.,
Brenninkmeijer, C. A. M., Hermann, M., van Velthoven, P. F. J., and Zahn,
A.: Significant radiative impact of volcanic aerosol in the lowermost
stratosphere, Nat. Commun., 6, 7692, https://doi.org/10.1038/ncomms8692, 2015.
Berthet, G., Jégou, F., Catoire, V., Krysztofiak, G., Renard, J.-B.,
Bourassa, A. E., Degenstein, D. A., Brogniez, C., Dorf, M., Kreycy, S.,
Pfeilsticker, K., Werner, B., Lefèvre, F., Roberts, T. J., Lurton, T.,
Vignelles, D., Bègue, N., Bourgeois, Q., Daugeron, D., Chartier, M.,
Robert, C., Gaubicher, B., and Guimbaud, C.: Impact of a moderate volcanic
eruption on chemistry in the lower stratosphere: balloon-borne observations
and model calculations, Atmos. Chem. Phys, 17, 2229–2253,
https://doi.org/10.5194/acp-17-2229-2017, 2017.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184,
https://doi.org/10.1002/2013rg000448, 2014.
Canty, T., Mascioli, N. R., Smarte, M. D., and Salawitch, R. J.: An
empirical model of global climate – Part 1: A critical evaluation of
volcanic cooling, Atmos. Chem. Phys., 13, 3997–4031,
https://doi.org/10.5194/acp-13-3997-2013, 2013.
Carboni, E., Grainger, R., Walker, J., Dudhia, A., and Siddans, R.: A new
scheme for sulphur dioxide retrieval from IASI measurements: application to
the Eyjafjallajökull eruption of April and May 2010, Atmos. Chem. Phys,
12, 11417–11434, https://doi.org/10.5194/acp-12-11417-2012, 2012.
Carboni, E., Grainger, R. G., Mather, T. A., Pyle, D. M., Thomas, G. E.,
Siddans, R., Smith, A. J. A., Dudhia, A., Koukouli, M. E., and Balis, D.:
The vertical distribution of volcanic SO2 plumes measured by IASI, Atmos.
Chem. Phys, 16, 4343–4367, https://doi.org/10.5194/acp-16-4343-2016, 2016.
Carn, S. A.: Quantifying tropospheric volcanic emissions with AIRS: The 2002
eruption of Mt. Etna (Italy), Geophys. Res. Lett., 32, L02301, https://doi.org/10.1029/2004gl021034,
2005.
Carn, S. A., Clarisse, L., and Prata, A. J.: Multi-decadal satellite
measurements of global volcanic degassing, J. Volcanol.
Geoth. Res., 311, 99–134, https://doi.org/10.1016/j.jvolgeores.2016.01.002, 2016.
Cassiani, M., Stohl, A., Olivié, D., Seland, Ø., Bethke, I., Pisso,
I., and Iversen, T.: The offline Lagrangian particle model
FLEXPART–NorESM/CAM (v1): model description and comparisons with the online
NorESM transport scheme and with the reference FLEXPART model, Geosci.
Model Dev., 9, 4029–4048, https://doi.org/10.5194/gmd-9-4029-2016, 2016.
Chahine, M. T., Pagano, T. S., Aumann, H. H., Atlas, R., Barnet, C.,
Blaisdell, J., Chen, L., Divakarla, M., Fetzer, E. J., Goldberg, M.,
Gautier, C., Granger, S., Hannon, S., Irion, F. W., Kakar, R., Kalnay, E.,
Lambrigtsen, B. H., Lee, S.-Y., Le Marshall, J., McMillan, W. W., McMillin,
L., Olsen, E. T., Revercomb, H., Rosenkranz, P., Smith, W. L., Staelin, D.,
Strow, L. L., Susskind, J., Tobin, D., Wolf, W., and Zhou, L.: AIRS:
Improving Weather Forecasting and Providing New Data on Greenhouse Gases, B.
Am. Meteorol. Soc., 87, 911–926, https://doi.org/10.1175/bams-87-7-911, 2006.
Eckhardt, S., Prata, A. J., Seibert, P., Stebel, K., and Stohl, A.:
Estimation of the vertical profile of sulfur dioxide injection into the
atmosphere by a volcanic eruption using satellite column measurements and
inverse transport modeling, Atmos. Chem. Phys, 8, 3881–3897,
https://doi.org/10.5194/acp-8-3881-2008, 2008.
Fairlie, T. D., Vernier, J.-P., Natarajan, M., and Bedka, K. M.: Dispersion
of the Nabro volcanic plume and its relation to the Asian summer monsoon,
Atmos. Chem. Phys., 14, 7045–7057,
https://doi.org/10.5194/acp-14-7045-2014, 2014.
Friberg, J., Martinsson, B. G., Andersson, S. M., Brenninkmeijer, C. A. M.,
Hermann, M., Van Velthoven, P. F. J., and Zahn, A.: Sources of increase in
lowermost stratospheric sulphurous and carbonaceous aerosol background
concentrations during 1999-2008 derived from CARIBIC flights, Tellus B, 66,
23428, https://doi.org/10.3402/tellusb.v66.23428, 2014.
Friberg, J., Martinsson, B. G., Andersson, S. M., and Sandvik, O. S.:
Volcanic impact on the climate – the stratospheric aerosol load in the
period 2006–2015, Atmos. Chem. Phys, 18, 11149–11169,
https://doi.org/10.5194/acp-18-11149-2018, 2018.
Fromm, M., Alfred, J., Hoppel, K., Hornstein, J., Bevilacqua, R., Shettle,
E., Servranckx, R., Li, Z., and Stocks, B.: Observations of boreal forest
fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998,
Geophys. Res. Lett., 27, 1407–1410, https://doi.org/10.1029/1999gl011200, 2000.
Ge, C., Wang, J., Carn, S., Yang, K., Ginoux, P., and Krotkov, N.:
Satellite-based global volcanic SO2 emissions and sulfate direct radiative
forcing during 2005–2012, J. Geophys. Res.-Atmos., 121, 3446–3464,
https://doi.org/10.1002/2015jd023134, 2016.
Getzewich, B. J., Vaughan, M. A., Hunt, W. H., Avery, M. A., Powell, K. A.,
Tackett, J. L., Winker, D. M., Kar, J., Lee, K.-P., and Toth, T. D.: CALIPSO
lidar calibration at 532 nm: version 4 daytime algorithm, Atmos. Meas.
Tech., 11, 6309–6326, https://doi.org/10.5194/amt-11-6309-2018, 2018.
Groot Zwaaftink, C. D., Henne, S., Thompson, R. L., Dlugokencky, E. J.,
Machida, T., Paris, J.-D., Sasakawa, M., Segers, A., Sweeney, C., and Stohl,
A.: Three-dimensional methane distribution simulated with FLEXPART 8-CTM-1.1
constrained with observation data, Geosci. Model Dev., 11,
4469–4487, https://doi.org/10.5194/gmd-11-4469-2018, 2018.
Günther, A., Höpfner, M., Sinnhuber, B.-M., Griessbach, S., Deshler,
T., von Clarmann, T., and Stiller, G.: MIPAS observations of volcanic
sulfate aerosol and sulfur dioxide in the stratosphere, Atmos. Chem. Phys.,
18, 1217–1239, https://doi.org/10.5194/acp-18-1217-2018, 2018.
Haywood, J. M., Clerbaux, C., Coheur, P., Degenstein, D., Braesicke, P.,
Jones, A., Clarisse, L., Bourassa, A., Barnes, J., Telford, P., Bellouin,
N., Boucher, O., and Agnew, P.: Observations of the eruption of the Sarychev
volcano and simulations using the HadGEM2 climate model, J. Geophys. Res.,
115, D21212, https://doi.org/10.1029/2010JD014447, 2010.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803,
2020.
Höpfner, M., Boone, C. D., Funke, B., Glatthor, N., Grabowski, U.,
Günther, A., Kellmann, S., Kiefer, M., Linden, A., Lossow, S., Pumphrey,
H. C., Read, W. G., Roiger, A., Stiller, G., Schlager, H., von Clarmann, T.,
and Wissmüller, K.: Sulfur dioxide (SO2) from MIPAS in the upper
troposphere and lower stratosphere 2002–2012, Atmos. Chem. Phys., 15,
7017–7037, https://doi.org/10.5194/acp-15-7017-2015, 2015
Kablick, G. P., Allen, D. R., Fromm, M. D., and Nedoluha, G. E.: Australian
PyroCb Smoke Generates Synoptic-Scale Stratospheric Anticyclones, Geophys.
Res. Lett., 47, e2020GL088101, https://doi.org/10.1029/2020gl088101, 2020.
Kar, J., Vaughan, M. A., Lee, K.-P., Tackett, J. L., Avery, M. A., Garnier,
A., Getzewich, B. J., Hunt, W. H., Josset, D., Liu, Z., Lucker, P. L.,
Magill, B., Omar, A. H., Pelon, J., Rogers, R. R., Toth, T. D., Trepte, C.
R., Vernier, J.-P., Winker, D. M., and Young, S. A.: CALIPSO lidar
calibration at 532 nm: version 4 nighttime algorithm, Atmos. Meas. Tech.,
11, 1459–1479, https://doi.org/10.5194/amt-11-1459-2018, 2018.
Khaykin, S. M., Godin-Beekmann, S., Hauchecorne, A., Pelon, J., Ravetta, F.,
and Keckhut, P.: Stratospheric Smoke With Unprecedentedly High Backscatter
Observed by Lidars Above Southern France, Geophys. Res. Lett., 45,
1639–1646, https://doi.org/10.1002/2017gl076763, 2018.
Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T.,
Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R.,
Fueglistaler, S., Prata, F. J., Vernier, J.-P., Schlager, H., Barnes, J. E.,
Antuña-Marrero, J.-C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J.,
Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C.,
Klocke, D., Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D.,
Rieger, L., Wilson, J. C., and Meland, B.: Stratospheric
aerosol-Observations, processes, and impact on climate, Rev. Geophys., 54,
278–335, https://doi.org/10.1002/2015rg000511, 2016.
Kristiansen, N. I., Stohl, A., Prata, A. J., Richter, A., Eckhardt, S.,
Seibert, P., Hoffmann, A., Ritter, C., Bitar, L., Duck, T. J., and Stebel,
K.: Remote sensing and inverse transport modeling of the Kasatochi eruption
sulfur dioxide cloud, J. Geophys. Res., 115, D00L16, https://doi.org/10.1029/2009jd013286, 2010.
Langford, A. O., Alvarez, R. J., Brioude, J., Evan, S., Iraci, L. T.,
Kirgis, G., Kuang, S., Leblanc, T., Newchurch, M. J., Pierce, R. B., Senff,
C. J., and Yates, E. L.: Coordinated profiling of stratospheric intrusions
and transported pollution by the Tropospheric Ozone Lidar Network (TOLNet)
and NASA Alpha Jet experiment (AJAX): Observations and comparison to
HYSPLIT, RAQMS, and FLEXPART, Atmos. Environ., 174, 1–14,
https://doi.org/10.1016/j.atmosenv.2017.11.031, 2018.
Levin, B. W., Rybin, A. V., Vasilenko, N. F., Prytkov, A. S., Chibisova, M.
V., Kogan, M. G., Steblov, G. M., and Frolov, D. I.: Monitoring of the
eruption of the Sarychev Peak Volcano in Matua Island in 2009 (central
Kurile islands), Doklady Earth Sci., 435, 1507–1510,
https://doi.org/10.1134/s1028334x10110218, 2010.
Liu, Z., Kar, J., Zeng, S., Tackett, J., Vaughan, M., Avery, M., Pelon, J.,
Getzewich, B., Lee, K.-P., Magill, B., Omar, A., Lucker, P., Trepte, C., and
Winker, D.: Discriminating between clouds and aerosols in the CALIOP version
4.1 data products, Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019,
2019.
Lurton, T., Jégou, F., Berthet, G., Renard, J.-B., Clarisse, L.,
Schmidt, A., Brogniez, C., and Roberts, T. J.: Model simulations of the
chemical and aerosol microphysical evolution of the Sarychev Peak 2009
eruption cloud compared to in situ and satellite observations, Atmos. Chem.
Phys., 18, 3223–3247, https://doi.org/10.5194/acp-18-3223-2018, 2018.
Martinsson, B. G., Nguyen, H. N., Brenninkmeijer, C. A. M., Zahn, A., Heintzenberg, J., Hermann, M., and van Velthoven, P. F. J.:
Characteristics and origin of lowermost stratospheric aerosol at northern
midlatitudes under volcanically quiescent conditions based on CARIBIC
observations, J. Geophys. Res., 110, D12201,
https://doi.org/10.1029/2004JD005644, 2005.
Martinsson, B. G., Brenninkmeijer, C. A. M., Carn, S. A., Hermann, M., Heue,
K. P., van Velthoven, P. F. J., and Zahn, A.: Influence of the 2008
Kasatochi volcanic eruption on sulfurous and carbonaceous aerosol
constituents in the lower stratosphere, Geophys. Res. Lett., 36, L12813,
https://doi.org/10.1029/2009gl038735, 2009.
Martinsson, B. G., Friberg, J., Sandvik, O. S., Hermann, M., van Velthoven,
P. F. J., and Zahn, A.: Formation and composition of the UTLS aerosol, NPJ
Clim. Atmos. Sci., 2, 40, https://doi.org/10.1038/s41612-019-0097-1, 2019.
Mills, M. J., Schmidt, A., Easter, R., Solomon, S., Kinnison, D. E., Ghan,
S. J., Neely, R. R., Marsh, D. R., Conley, A., Bardeen, C. G., and
Gettelman, A.: Global volcanic aerosol properties derived from emissions,
1990–2014, using CESM1(WACCM), J. Geophys. Res.-Atmos., 121, 2332–2348,
https://doi.org/10.1002/2015jd024290, 2016.
Murphy, D. M., Thomson, D. S., and Mahoney, M. J.: In situ measurements of
organics, meteoritic material, mercury, and other elements in aerosols at 5
to 19 kilometers, Science, 282, 1664–1669, https://doi.org/10.1126/science.282.5394.1664,
1998.
NASA/LARC/SD/ASDC: CALIPSO Lidar Level 1B profile data, V4‐10 [data set],
available at: https://doi.org/10.5067/CALIOP/CALIPSO/LID_L1-STANDARD-V4-10, 2016.
Peterson, D. A., Campbell, J. R., Hyer, E. J., Fromm, M. D., Kablick, G. P.,
3rd, Cossuth, J. H., and DeLand, M. T.: Wildfire-driven thunderstorms cause
a volcano-like stratospheric injection of smoke, NPJ Clim. Atmos. Sci., 1, 30,
https://doi.org/10.1038/s41612-018-0039-3, 2018.
Tipka, A., Haimberger, L., and Seibert, P.: Flex_extract v7.1.2 – a software package to retrieve and prepare ECMWF data for use in FLEXPART, Geosci. Model Dev., 13, 5277–5310, https://doi.org/10.5194/gmd-13-5277-2020, 2020.
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M.,
Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C.
D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D.,
Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and
Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4,
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019,
2019.
Prata, A. J. and Bernardo, C.: Retrieval of volcanic SO2 column
abundance from atmospheric infrared sounder data, J. Geophys. Res., 112,
D20204, https://doi.org/10.1029/2006JD007955, 2007.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219,
2000.
Rybin, A., Chibisova, M., Webley, P., Steensen, T., Izbekov, P., Neal, C.,
and Realmuto, V.: Satellite and ground observations of the June 2009
eruption of Sarychev Peak volcano, Matua Island, Central Kuriles, Bull.
Volcanol., 73, 1377–1392, https://doi.org/10.1007/s00445-011-0481-0, 2011.
Sandvik, O. S., Friberg, J., Martinsson, B. G., van Velthoven, P. F. J.,
Hermann, M., and Zahn, A.: Intercomparison of in-situ aircraft and satellite
aerosol measurements in the stratosphere, Sci. Rep., 9, 15576,
https://doi.org/10.1038/s41598-019-52089-6, 2019.
Sandvik, O. S., Friberg, J.,
Sporre, M. K., Martinsson, B. G.: 3D dataset from “Methodology to obtain highly
resolved SO2 vertical profiles for representation of volcanic emissions in climate models”,
Swedish National Data Service [data set],
https://doi.org/10.5878/q2ea-kt53, 2021.
Santer, B. D., Bonfils, C., Painter, J. F., Zelinka, M. D., Mears, C.,
Solomon, S., Schmidt, G. A., Fyfe, J. C., Cole, J. N. S., Nazarenko, L.,
Taylor, K. E., and Wentz, F. J.: Volcanic contribution to decadal changes in
tropospheric temperature, Nat. Geosci., 7, 185–189, https://doi.org/10.1038/ngeo2098, 2014.
Solomon, S., Daniel, J. S., Neely III, R. R., Vernier, J. P., Dutton, E. G.,
and Thomason, L. W.: The persistently variable “background” stratospheric
aerosol layer and global climate change, Science, 333, 866–870,
https://doi.org/10.1126/science.1206027, 2011.
SPARC: SPARC Assessment of Stratospheric Aerosol Properties (ASAP), SPARC
Report, 322 pp., 2006.
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang,
Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L.,
Miller, S. D., Austin, R. T., Benedetti, A., and Mitrescu, C.: The Cloudsat
Mission and the a-Train, B. Am. Meteorol. Soc., 83, 1771–1790,
https://doi.org/10.1175/bams-83-12-1771, 2002.
Thies, B. and Bendix, J.: Satellite based remote sensing of weather and
climate: recent achievements and future perspectives, Meteorol.
Appl., 18, 262–295, https://doi.org/10.1002/met.288, 2011.
Timmreck, C., Mann, G. W., Aquila, V., Hommel, R., Lee, L. A., Schmidt, A.,
Brühl, C., Carn, S., Chin, M., Dhomse, S. S., Diehl, T., English, J. M.,
Mills, M. J., Neely, R., Sheng, J., Toohey, M., and Weisenstein, D.: The
Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP):
motivation and experimental design, Geosci. Model Dev., 11,
2581–2608, https://doi.org/10.5194/gmd-11-2581-2018, 2018.
Vernier, J.-P., Thomason, L. W., Pommereau, J.-P., Bourassa, A., Pelon, J.,
Garnier, A., Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., and
Vargas, F.: Major influence of tropical volcanic eruptions on the
stratospheric aerosol layer during the last decade, Geophys. Res. Lett., 38,
L12807, https://doi.org/10.1029/2011GL047563, 2011.
Vernier, J. P., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Bian, J.,
Martinsson, B. G., Crumeyrolle, S., Thomason, L. W., and Bedka, K. M.:
Increase in upper tropospheric and lower stratospheric aerosol levels and
its potential connection with Asian pollution, J. Geophys. Res.-Atmos., 120,
1608–1619, https://doi.org/10.1002/2014JD022372, 2015.
Watts, S. F.: The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon
disulfide and hydrogen sulfide, Atmos. Environ., 34, 761–779,
https://doi.org/10.1016/s1352-2310(99)00342-8, 2000.
Winker, D. M., Hunt, W. H., and McGill, M. J.: Initial performance
assessment of CALIOP, Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007gl030135, 2007.
Winker, D. M., Pelon, J., Coakley, J. A., Ackerman, S. A., Charlson, R. J.,
Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L.,
Le Treut, H., McCormick, M. P., Mégie, G., Poole, L., Powell, K.,
Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO Mission: A
Global 3D View of Aerosols and Clouds, B. Am. Meteorol. Soc., 91, 1211–1229,
https://doi.org/10.1175/2010bams3009.1, 2010.
Wu, X., Griessbach, S., and Hoffmann, L.: Equatorward dispersion of a
high-latitude volcanic plume and its relation to the Asian summer monsoon: a
case study of the Sarychev eruption in 2009, Atmos. Chem. Phys., 17,
13439–13455, https://doi.org/10.5194/acp-17-13439-2017, 2017.
Short summary
A method to form SO2 profiles in the stratosphere with high vertical resolution following volcanic eruptions is introduced. The method combines space-based high-resolution vertical aerosol profiles and SO2 measurements the first 2 weeks after an eruption with air mass trajectory analyses. The SO2 is located at higher altitude than in most previous studies. The detailed resolution of the SO2 profile is unprecedented compared to other methods.
A method to form SO2 profiles in the stratosphere with high vertical resolution following...