Articles | Volume 15, issue 20
https://doi.org/10.5194/amt-15-5917-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-5917-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of GRUAN data products for Meisei iMS-100 and Vaisala RS92 radiosondes at Tateno, Japan
Shunsuke Hoshino
CORRESPONDING AUTHOR
Office of Numerical Prediction Modeling Fundamental Technology, Numerical Prediction Division, Information Infrastructure Department, Japan Meteorological Agency, 1–2 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Takuji Sugidachi
Meisei Electric Co., Ltd., 2223 Naganumamachi, Isesaki, Gunma 372-8585, Japan
Kensaku Shimizu
Meisei Electric Co., Ltd., 2223 Naganumamachi, Isesaki, Gunma 372-8585, Japan
Eriko Kobayashi
Aerological Observatory, 1–2 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Masatomo Fujiwara
Faculty of Environmental Earth Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo 060-0810, Japan
Masami Iwabuchi
Aerological Observatory, 1–2 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Related authors
No articles found.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Mónica Navarro-Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data, 17, 4901–4932, https://doi.org/10.5194/essd-17-4901-2025, https://doi.org/10.5194/essd-17-4901-2025, 2025
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 11–16 % in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Masatomo Fujiwara, Bomin Sun, Anthony Reale, Domenico Cimini, Salvatore Larosa, Lori Borg, Christoph von Rohden, Michael Sommer, Ruud Dirksen, Marion Maturilli, Holger Vömel, Rigel Kivi, Bruce Ingleby, Ryan J. Kramer, Belay Demoz, Fabio Madonna, Fabien Carminati, Owen Lewis, Brett Candy, Christopher Thomas, David Edwards, Noersomadi, Kensaku Shimizu, and Peter Thorne
Atmos. Meas. Tech., 18, 2919–2955, https://doi.org/10.5194/amt-18-2919-2025, https://doi.org/10.5194/amt-18-2919-2025, 2025
Short summary
Short summary
We assess and illustrate the benefits of high-altitude attainment of balloon-borne radiosonde soundings up to and beyond 10 hPa level from various aspects. We show that the extra costs and technical challenges involved in consistent attainment of high ascents are more than outweighed by the benefits for a broad variety of real-time and delayed-mode applications. Consistent attainment of high ascents should therefore be pursued across the balloon observational network.
Simone Brunamonti, Harald Saathoff, Albert Hertzog, Glenn Diskin, Masatomo Fujiwara, Karen Rosenlof, Ottmar Möhler, Béla Tuzson, Lukas Emmenegger, Nadir Amarouche, Georges Durry, Fabien Frérot, Jean-Christophe Samake, Claire Cenac, Julio Lopez, Paul Monnier, and Mélanie Ghysels
EGUsphere, https://doi.org/10.5194/egusphere-2025-1029, https://doi.org/10.5194/egusphere-2025-1029, 2025
Short summary
Short summary
Water vapor is a strong greenhouse gas and accurate measurements of its concentration in the upper atmosphere (~8–25 km altitude) are crucial for reliable climate predictions. We investigated the performance of four airborne hygrometers, deployed on aircraft or stratospheric balloon platforms and based on different techniques, in a climate simulation chamber. The results demonstrate the high accuracy and reliability of the involved sensors for atmospheric monitoring and research applications.
Takuji Sugidachi, Masatomo Fujiwara, Kensaku Shimizu, Shin-Ya Ogino, Junko Suzuki, and Ruud J. Dirksen
Atmos. Meas. Tech., 18, 509–531, https://doi.org/10.5194/amt-18-509-2025, https://doi.org/10.5194/amt-18-509-2025, 2025
Short summary
Short summary
A Peltier-based chilled-mirror hygrometer, SKYDEW, has been developed to measure tropospheric and stratospheric water vapor. Continuous accurate measurements of water vapor are essential for climate monitoring. More than 40 soundings with SKYDEW have been conducted since 2011 to evaluate the performance. The result of soundings at tropical and midlatitudes demonstrated that SKYDEW is able to measure up to an altitude of 20–25 km for daytime soundings and above 25 km for nighttime soundings.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Varaha Ravi Kiran, Madineni Venkat Ratnam, Masatomo Fujiwara, Herman Russchenberg, Frank G. Wienhold, Bomidi Lakshmi Madhavan, Mekalathur Roja Raman, Renju Nandan, Sivan Thankamani Akhil Raj, Alladi Hemanth Kumar, and Saginela Ravindra Babu
Atmos. Meas. Tech., 15, 4709–4734, https://doi.org/10.5194/amt-15-4709-2022, https://doi.org/10.5194/amt-15-4709-2022, 2022
Short summary
Short summary
We proposed and conducted the multi-instrumental BACIS (Balloon-borne Aerosol–Cloud Interaction Studies) field campaigns using balloon-borne in situ measurements and ground-based and space-borne remote sensing instruments. Aerosol-cloud interaction is quantified for liquid clouds by segregating aerosol and cloud information in a balloon profile. Overall, the observational approach proposed here demonstrated its capability for understanding the aerosol–cloud interaction process.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Cited articles
Bodeker, G. E., Bojinski, S., Cimini, D., Dirksen, R. J., Haeffelin, M.,
Hannigan, J. W., Hurst, D. F., Leblanc, T., Madonna, F., Maturilli, M.,
Mikalsen, A. C., Philipona, R., Reale, T., Seidel, D. J., Tan, D. G. H.,
Thorne, P. W., Vömel, H., and Wang, J.: Reference Upper-Air Observations
for Climate: From Concept to Reality, B. Am. Meteorol. Soc., 97, 123–135,
https://doi.org/10.1175/bams-d-14-00072.1, 2016. a
Carreño, C. R., Suárez, A., Torrecilla, J. L., Berrocal, M. C., Manchón, P. M., Manso, P. P., Bernabé, A. H., Fernández, D. G., and Hong, Y.: GAA-UAM/scikit-fda: Version 0.4 (0.4), Zenodo [code], https://doi.org/10.5281/zenodo.3957915, 2020. a, b
CGMS: Consolidated report of CGMS activities (10th edition, V10), The Coordination Group for Meteorological Satellites (CGMS), Tech.
rep., http://www.cgms-info.org/documents/consolidated-report-of-cgms-activities-%282003%29.pdf (last access: 3 December 2020),
2003. a
CIMO Task Team on Upper-air Intercomparison: Project Plan for the WMO
Upper-Air Instrument Intercomparison, https://community.wmo.int/activity-areas/imop/intercomparisons, (last access: June 2021) 2020. a
Colombo, P. and Fassò, A.: Quantifying the interpolation uncertainty of
radiosonde humidity profiles, Meas. Sci. Technol., 33, 074001,
https://doi.org/10.1088/1361-6501/ac5bff, 2022. a
Cox, D. R.: The regression analysis of binary sequences, J. R. Stat. Soc. B, 20, 215–232, 1958. a
Dupont, J.-C., Haeffelin, M., Badosa, J., Clain, G., Raux, C., and Vignelles,
D.: Characterization and Corrections of Relative Humidity Measurement from
Meteomodem M10 Radiosondes at Midlatitude Stations, J. Atmos. Ocean. Tech., 37, 857–871, https://doi.org/10.1175/JTECH-D-18-0205.1,
2020. a, b
Fassò, A., Sommer, M., and von Rohden, C.: Interpolation uncertainty of atmospheric temperature profiles, Atmos. Meas. Tech., 13, 6445–6458, https://doi.org/10.5194/amt-13-6445-2020, 2020. a
Hoshino, S., Sugidachi, T., Shimizu, K., Kobayashi, E., Fujiwara, M., and
Iwabuchi, M.: iMS-100 GRUAN Data Product Version 2, GRUAN [data set], https://doi.org/10.5676/GRUAN/IMS-100-GDP.2, 2022b. a
Immler, F. J., Dykema, J., Gardiner, T., Whiteman, D. N., Thorne, P. W., and Vömel, H.: Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products, Atmos. Meas. Tech., 3, 1217–1231, https://doi.org/10.5194/amt-3-1217-2010, 2010. a, b, c, d
JMA: Guidelines of Radiosonde Soundings, 1995. a
Kizu, N., Sugidachi, T., Kobayashi, E., Hoshino, S., Shimizu, K., Maeda, R.,
and Fujiwara, M.: Technical Characteristics and GRUAN Data Processing for
the Meisei RS-11G and iMS-100 Radiosondes, GRUAN Technical
Document 5, GRUAN Lead Centre, https://www.gruan.org/gruan/editor/documents/gruan/GRUAN-TD-5_MeiseiRadiosondes_v1_20180221.pdf (last access: 12 October 2022), 2018. a, b, c
Kizu, N., Sugidachi, T., Kobayashi, E., Hoshino, S., Shimizu, K., Maeda, R.,
and Fujiwara, M.: RS-11G GRUAN Data Product Version 1, GRUAN [data set],
https://doi.org/10.5676/GRUAN/RS-11G-GDP.1, 2019. a, b
Kobayashi, E.: Quantitative comparison of the Meisei RS-11G radiosonde and the
Vaisala RS92-SGP radiosonde for characterization of routine soundings,
Journal of the Aerological Observatory, 73, 11–24, 2015. a
Kobayashi, E., Noto, Y., Wakino, S., Yoshii, H., Ohyoshi, T., Saito, S., and
Baba, Y.: Comparison of Meisei RS2-91 Rawinsondes and Vaisala
RS92-SGP Radiosondes at Tateno for the Data Continuity for
Climatic Data Analysis, J. Meteorol. Soc. Jpn., 90, 923–945, https://doi.org/10.2151/jmsj.2012-605, 2012. a
Kobayashi, E., Hoshino, S., Iwabuchi, M., Sugidachi, T., Shimizu, K., and Fujiwara, M.: Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06∘ N, 140.13∘ E), Japan, Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, 2019. a, b, c, d, e, f, g, h, i, j
Nash, J., Oakley, T., Vömel, H., and Wei, L.: WMO Intercomparison of
High Quality Radiosonde Systems, Yangjiang, China, 12 July–3 August 2010, WMO, Tech. rep., https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-107_Yangjiang/IOM-107_Yangjiang.zip (last access: 10 June 2022) 2011. a
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The Development
and Evaluation of the Earth Gravitational Model 2008 (EGM2008),
J. Geophys. Res.-Sol. Ea., 117, B04406,
https://doi.org/10.1029/2011JB008916, 2012. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Ramsay, J. O. and Silverman, B. W.: The Registration and Display of Functional
Data, in: Functional Data Analysis, 2nd edn., Springer New York,
New York, NY, 127–145, https://doi.org/10.1007/b98888, 2005. a
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data
by Simplified Least Squares Procedures, Anal. Chem., 36,
1627–1639, https://doi.org/10.1021/ac60214a047, 1964. a
Seidel, D. J., Berger, F. H., Immler, F., Sommer, M., Vömel, H., Diamond,
H. J., Dykema, J., Goodrich, D., Murray, W., Peterson, T., Sisterson, D.,
Thorne, P., and Wang, J.: Reference Upper-Air Observations for
Climate: Rationale, Progress, and Plans, B. Am. Meteorol. Soc., 90, 361–369, https://doi.org/10.1175/2008BAMS2540.1,
2009. a
Sommer, M., Dirksen, R., and Immler, F.: RS92 GRUAN Data Product
Version 2, GRUAN [data set], https://doi.org/10.5676/GRUAN/RS92-GDP.2, 2012. a, b
Szantai, A., Mémin, E., Cuzol, A., Papadakis, N., Héas, P., Wieneke,
B., Alvarez, L., Becker, F., and Lopes, P.: Comparison of MSG dense
atmospheric motion vector fields produced by different methods, in: 2007
EUMETSAT Meteorological Satellite Conference/15th AMS Satellite
Meteorology & Oceanography Conference, EUMETSAT, 24–28 September 2007, Amsterdam, The Netherlands, https://www.eumetsat.int/joint-2007-eumetsat (last access: 12 October 2022), 2007. a
Vömel, H., David, D. E., and Smith, K.: Accuracy of Tropospheric and
Stratospheric Water Vapor Measurements by the Cryogenic Frost Point
Hygrometer: Instrumental Details and Observations, J. Geophys. Res.-Atmos., 112, D08305,
https://doi.org/10.1029/2006jd007224, 2007. a, b
Vömel, H., Naebert, T., Dirksen, R., and Sommer, M.: An update on the uncertainties of water vapor measurements using cryogenic frost point hygrometers, Atmos. Meas. Tech., 9, 3755–3768, https://doi.org/10.5194/amt-9-3755-2016, 2016. a, b
von Rohden, C., Sommer, M., and Dirksen, R.: Rigging Recommendations for Dual
Radiosonde Soundings, GRUAN Lead Centre, GRUAN Technical Note 7,
Lindenberg, https://www.gruan.org/gruan/editor/documents/gruan/GRUAN-TN-7_Comparison_setup_v1.0_final.pdf (last access: 29 March 2020) 2016. a
von Rohden, C., Sommer, M., Naebert, T., Motuz, V., and Dirksen, R. J.: Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41, Atmos. Meas. Tech., 15, 383–405, https://doi.org/10.5194/amt-15-383-2022, 2022. a
Short summary
GRUAN data products (GDPs) from Meisei iMS-100 and Vaisala RS92 were compared with 59 dual sounding data. For daytime observations, the iMS-100 temperature is around 0.5 K lower than RS92-GDP in the stratosphere, but for nighttime observations, the difference is around −0.1 K, and data are mostly in agreement. For relative humidity (RH), iMS-100 is around 1–2 % RH higher in the troposphere and 1 % RH smaller in the stratosphere than RS92, but both GDPs are in agreement for most of the profile.
GRUAN data products (GDPs) from Meisei iMS-100 and Vaisala RS92 were compared with 59 dual...