Articles | Volume 15, issue 3
https://doi.org/10.5194/amt-15-811-2022
https://doi.org/10.5194/amt-15-811-2022
Research article
 | 
15 Feb 2022
Research article |  | 15 Feb 2022

Characterizing and correcting the warm bias observed in Aircraft Meteorological Data Relay (AMDAR) temperature observations

Siebren de Haan, Paul M. A. de Jong, and Jitze van der Meulen

Related authors

EMADDC: high quality, quickly available and high volume wind and temperature observations from aircraft using the Mode-S EHS infrastructure
Siebren de Haan, Paul de Jong, Michal Koutek, and Jan Sondij
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-110,https://doi.org/10.5194/amt-2024-110, 2024
Preprint under review for AMT
Short summary
Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe
Guergana Guerova, Jonathan Jones, Jan Douša, Galina Dick, Siebren de Haan, Eric Pottiaux, Olivier Bock, Rosa Pacione, Gunnar Elgered, Henrik Vedel, and Michael Bender
Atmos. Meas. Tech., 9, 5385–5406, https://doi.org/10.5194/amt-9-5385-2016,https://doi.org/10.5194/amt-9-5385-2016, 2016
Short summary
Estimates of Mode-S EHS aircraft-derived wind observation errors using triple collocation
Siebren de Haan
Atmos. Meas. Tech., 9, 4141–4150, https://doi.org/10.5194/amt-9-4141-2016,https://doi.org/10.5194/amt-9-4141-2016, 2016
Short summary
Retrieving atmospheric turbulence information from regular commercial aircraft using Mode-S and ADS-B
Jacek M. Kopeć, Kamil Kwiatkowski, Siebren de Haan, and Szymon P. Malinowski
Atmos. Meas. Tech., 9, 2253–2265, https://doi.org/10.5194/amt-9-2253-2016,https://doi.org/10.5194/amt-9-2253-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Assessing the ducting phenomenon and its potential impact on Global Navigation Satellite System (GNSS) radio occultation refractivity retrievals over the northeast Pacific Ocean using radiosondes and global reanalysis
Thomas E. Winning Jr., Feiqin Xie, and Kevin J. Nelson
Atmos. Meas. Tech., 17, 6851–6863, https://doi.org/10.5194/amt-17-6851-2024,https://doi.org/10.5194/amt-17-6851-2024, 2024
Short summary
Time-resolved measurements of the densities of individual frozen hydrometeors and fresh snowfall
Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 17, 4581–4598, https://doi.org/10.5194/amt-17-4581-2024,https://doi.org/10.5194/amt-17-4581-2024, 2024
Short summary
Uncertainties in temperature statistics and fluxes determined by sonic anemometers due to wind-induced vibrations of mounting arms
Zhongming Gao, Heping Liu, Dan Li, Bai Yang, Von Walden, Lei Li, and Ivan Bogoev
Atmos. Meas. Tech., 17, 4109–4120, https://doi.org/10.5194/amt-17-4109-2024,https://doi.org/10.5194/amt-17-4109-2024, 2024
Short summary
Performance evaluation of MeteoTracker mobile sensor for outdoor applications
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024,https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Impacts of anemometer changes, site relocations and processing methods on wind speed trends in China
Yi Liu, Lihong Zhou, Yingzuo Qin, Cesar Azorin-Molina, Cheng Shen, Rongrong Xu, and Zhenzhong Zeng
Atmos. Meas. Tech., 17, 1123–1131, https://doi.org/10.5194/amt-17-1123-2024,https://doi.org/10.5194/amt-17-1123-2024, 2024
Short summary

Cited articles

Ballish, B. A. and Kumar, K. V.: Systematic Differences in Aircraft and Radiosonde Temperatures, B. Am. Meteorol. Soc., 89, 1689–1707, https://doi.org/10.1175/2008bams2332.1, 2008. a
Benjamin, S. G., Schwartz, B. E., and Cole, R. E.: Accuracy of ACARS Wind and Temperature Observations Determined by Collocation, Weather Forecast., 14, 1032–1038, https://doi.org/10.1175/1520-0434(1999)014<1032:AOAWAT>2.0.CO;2, 1999. a
Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteor. Soc., 131, 3323–3343, https://doi.org/10.1256/qj.05.137, 2005. a
Dee, D. P. and Da Silva, A. M.: Data assimilation in the presence of forecast bias, Q. J. Roy. Meteor. Soc., 124, 269–295, https://doi.org/10.1002/qj.49712454512, 1998. a
de Haan, S.: High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar, J. Geophys. Res., 116, D10111, https://doi.org/10.1029/2010JD015264, 2011. a, b
Download
Short summary
AMDAR temperatures suffer from a bias, which can be related to a difference in the timing of height and measurement and to internal corrections applied to pressure altitude. Based on NWP model temperature data, combined with Mach number and true airspeed, we could estimate corrections. Comparing corrected temperatures with (independent) radiosonde observations demonstrates a reduction in the bias, from 0.5 K to around zero, and standard deviation, of almost 10 %.