Articles | Volume 16, issue 12
https://doi.org/10.5194/amt-16-3085-2023
https://doi.org/10.5194/amt-16-3085-2023
Research article
 | 
21 Jun 2023
Research article |  | 21 Jun 2023

A data-driven persistence test for robust (probabilistic) quality control of measured environmental time series: constant value episodes

Najmeh Kaffashzadeh

Related authors

Assessment of tropospheric ozone products from downscaled CAMS reanalysis and CAMS daily forecast using urban air quality monitoring stations in Iran
Najmeh Kaffashzadeh and Abbas Ali Aliakbari Bidokhti
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-226,https://doi.org/10.5194/gmd-2023-226, 2024
Preprint under review for GMD
Short summary
Assessment of tropospheric ozone products from CAMS reanalysis and near-real time analysis using observations over Iran
Najmeh Kaffashzadeh and Abbas Ali Aliakbari Bidokhti
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-138,https://doi.org/10.5194/gmd-2022-138, 2022
Revised manuscript not accepted
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Impacts of anemometer changes, site relocations and processing methods on wind speed trends in China
Yi Liu, Lihong Zhou, Yingzuo Qin, Cesar Azorin-Molina, Cheng Shen, Rongrong Xu, and Zhenzhong Zeng
Atmos. Meas. Tech., 17, 1123–1131, https://doi.org/10.5194/amt-17-1123-2024,https://doi.org/10.5194/amt-17-1123-2024, 2024
Short summary
Validation of Aeolus L2B products over the tropical Atlantic using radiosondes
Maurus Borne, Peter Knippertz, Martin Weissmann, Benjamin Witschas, Cyrille Flamant, Rosimar Rios-Berrios, and Peter Veals
Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024,https://doi.org/10.5194/amt-17-561-2024, 2024
Short summary
Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
Marcel Schröder, Tobias Bätge, Eberhard Bodenschatz, Michael Wilczek, and Gholamhossein Bagheri
Atmos. Meas. Tech., 17, 627–657, https://doi.org/10.5194/amt-17-627-2024,https://doi.org/10.5194/amt-17-627-2024, 2024
Short summary
Evaluation of in situ observations on Marine Weather Observer during Typhoon Sinlaku
Wenying He, Hongbin Chen, Hongyong Yu, Jun Li, Jidong Pan, Shuqing Ma, Xuefen Zhang, Rang Guo, Bingke Zhao, Xi Chen, Xiangao Xia, and Kaicun Wang
Atmos. Meas. Tech., 17, 135–144, https://doi.org/10.5194/amt-17-135-2024,https://doi.org/10.5194/amt-17-135-2024, 2024
Short summary
Validation of the WRF-ARW eclipse model with measurements from the 2019 and 2020 total solar eclipses
Carl E. Spangrude, Jennifer W. Fowler, W. Graham Moss, and June Wang
Atmos. Meas. Tech., 16, 5167–5179, https://doi.org/10.5194/amt-16-5167-2023,https://doi.org/10.5194/amt-16-5167-2023, 2023
Short summary

Cited articles

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. 
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M.: Time series analysis: forecasting and control, 5th edn., John Wiley & Sons, Inc, Hoboken, New Jersey, 712 pp., ISBN: 978-1-118-67502-1, 2015. 
Bushnell, M., Waldmann, C., Seitz, S., Buckley, E., Tamburri, M., Hermes, J., Heslop, E., and Lara-Lopez, A.: Quality Assurance of Oceanographic Observations: Standards and Guidance Adopted by an International Partnership, Frontiers in Marine Science, 6, 706, https://doi.org/10.3389/fmars.2019.00706, 2019. 
Campbell, J. L., Rustad, L. E., Porter, J. H., Taylor, J. R., Dereszynski, E. W., Shanley, J. B., Gries, C., Henshaw, D. L., Martin, M. E., Sheldon, W. M., and Boose, E. R.: Quantity is Nothing without Quality: Automated QA/QC for Streaming Environmental Sensor Data, BioScience, 63, 574–585, https://doi.org/10.1525/bio.2013.63.7.10, 2013. 
Castelão, G. P.: A Flexible System for Automatic Quality Control of Oceanographic Data, arXiv [preprint], https://doi.org/10.48550/arXiv.1503.02714, 17 November 2016. 
Download
Short summary
Although quality control is a well-known issue in data application, research initiatives and organizations apply given methods based on traditional techniques (ad hoc thresholds and manual). These approaches are not only error prone but also unsuitable for a large volume of data. The method proposed in this paper is based on a new concept (probability) as an intuitive indicator and data’s characteristics, which leads it to be applicable to a wide variety of data and eases its fit for purpose.