Articles | Volume 16, issue 12
https://doi.org/10.5194/amt-16-3085-2023
https://doi.org/10.5194/amt-16-3085-2023
Research article
 | 
21 Jun 2023
Research article |  | 21 Jun 2023

A data-driven persistence test for robust (probabilistic) quality control of measured environmental time series: constant value episodes

Najmeh Kaffashzadeh

Related authors

Assessment of surface ozone products from downscaled CAMS reanalysis and CAMS daily forecast using urban air quality monitoring stations in Iran
Najmeh Kaffashzadeh and Abbas-Ali Aliakbari Bidokhti
Geosci. Model Dev., 17, 4155–4179, https://doi.org/10.5194/gmd-17-4155-2024,https://doi.org/10.5194/gmd-17-4155-2024, 2024
Short summary
Assessment of tropospheric ozone products from CAMS reanalysis and near-real time analysis using observations over Iran
Najmeh Kaffashzadeh and Abbas Ali Aliakbari Bidokhti
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-138,https://doi.org/10.5194/gmd-2022-138, 2022
Revised manuscript not accepted
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Time-resolved measurements of the densities of individual frozen hydrometeors and fresh snowfall
Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 17, 4581–4598, https://doi.org/10.5194/amt-17-4581-2024,https://doi.org/10.5194/amt-17-4581-2024, 2024
Short summary
Uncertainties in temperature statistics and fluxes determined by sonic anemometers due to wind-induced vibrations of mounting arms
Zhongming Gao, Heping Liu, Dan Li, Bai Yang, Von Walden, Lei Li, and Ivan Bogoev
Atmos. Meas. Tech., 17, 4109–4120, https://doi.org/10.5194/amt-17-4109-2024,https://doi.org/10.5194/amt-17-4109-2024, 2024
Short summary
Performance evaluation of MeteoTracker mobile sensor for outdoor applications
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024,https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Impacts of anemometer changes, site relocations and processing methods on wind speed trends in China
Yi Liu, Lihong Zhou, Yingzuo Qin, Cesar Azorin-Molina, Cheng Shen, Rongrong Xu, and Zhenzhong Zeng
Atmos. Meas. Tech., 17, 1123–1131, https://doi.org/10.5194/amt-17-1123-2024,https://doi.org/10.5194/amt-17-1123-2024, 2024
Short summary
Validation of Aeolus L2B products over the tropical Atlantic using radiosondes
Maurus Borne, Peter Knippertz, Martin Weissmann, Benjamin Witschas, Cyrille Flamant, Rosimar Rios-Berrios, and Peter Veals
Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024,https://doi.org/10.5194/amt-17-561-2024, 2024
Short summary

Cited articles

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. 
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M.: Time series analysis: forecasting and control, 5th edn., John Wiley & Sons, Inc, Hoboken, New Jersey, 712 pp., ISBN: 978-1-118-67502-1, 2015. 
Bushnell, M., Waldmann, C., Seitz, S., Buckley, E., Tamburri, M., Hermes, J., Heslop, E., and Lara-Lopez, A.: Quality Assurance of Oceanographic Observations: Standards and Guidance Adopted by an International Partnership, Frontiers in Marine Science, 6, 706, https://doi.org/10.3389/fmars.2019.00706, 2019. 
Campbell, J. L., Rustad, L. E., Porter, J. H., Taylor, J. R., Dereszynski, E. W., Shanley, J. B., Gries, C., Henshaw, D. L., Martin, M. E., Sheldon, W. M., and Boose, E. R.: Quantity is Nothing without Quality: Automated QA/QC for Streaming Environmental Sensor Data, BioScience, 63, 574–585, https://doi.org/10.1525/bio.2013.63.7.10, 2013. 
Castelão, G. P.: A Flexible System for Automatic Quality Control of Oceanographic Data, arXiv [preprint], https://doi.org/10.48550/arXiv.1503.02714, 17 November 2016. 
Download
Short summary
Although quality control is a well-known issue in data application, research initiatives and organizations apply given methods based on traditional techniques (ad hoc thresholds and manual). These approaches are not only error prone but also unsuitable for a large volume of data. The method proposed in this paper is based on a new concept (probability) as an intuitive indicator and data’s characteristics, which leads it to be applicable to a wide variety of data and eases its fit for purpose.