Articles | Volume 16, issue 21
https://doi.org/10.5194/amt-16-5167-2023
https://doi.org/10.5194/amt-16-5167-2023
Research article
 | 
03 Nov 2023
Research article |  | 03 Nov 2023

Validation of the WRF-ARW eclipse model with measurements from the 2019 and 2020 total solar eclipses

Carl E. Spangrude, Jennifer W. Fowler, W. Graham Moss, and June Wang

Related authors

Evaluation of the New York State Mesonet Profiler Network data
Bhupal Shrestha, Jerald A. Brotzge, and Junhong Wang
Atmos. Meas. Tech., 15, 6011–6033, https://doi.org/10.5194/amt-15-6011-2022,https://doi.org/10.5194/amt-15-6011-2022, 2022
Short summary
Managing the transition from Vaisala RS92 to RS41 radiosondes within the Global Climate Observing System Reference Upper-Air Network (GRUAN): a progress report
Ruud J. Dirksen, Greg E. Bodeker, Peter W. Thorne, Andrea Merlone, Tony Reale, Junhong Wang, Dale F. Hurst, Belay B. Demoz, Tom D. Gardiner, Bruce Ingleby, Michael Sommer, Christoph von Rohden, and Thierry Leblanc
Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020,https://doi.org/10.5194/gi-9-337-2020, 2020
Short summary
Precipitable water characteristics during the 2013 Colorado flood using ground-based GPS measurements
Hannah K. Huelsing, Junhong Wang, Carl Mears, and John J. Braun
Atmos. Meas. Tech., 10, 4055–4066, https://doi.org/10.5194/amt-10-4055-2017,https://doi.org/10.5194/amt-10-4055-2017, 2017
Short summary
A review of sources of systematic errors and uncertainties in observations and simulations at 183 GHz
Hélène Brogniez, Stephen English, Jean-François Mahfouf, Andreas Behrendt, Wesley Berg, Sid Boukabara, Stefan Alexander Buehler, Philippe Chambon, Antonia Gambacorta, Alan Geer, William Ingram, E. Robert Kursinski, Marco Matricardi, Tatyana A. Odintsova, Vivienne H. Payne, Peter W. Thorne, Mikhail Yu. Tretyakov, and Junhong Wang
Atmos. Meas. Tech., 9, 2207–2221, https://doi.org/10.5194/amt-9-2207-2016,https://doi.org/10.5194/amt-9-2207-2016, 2016
Short summary
The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations
T. Ning, J. Wang, G. Elgered, G. Dick, J. Wickert, M. Bradke, M. Sommer, R. Querel, and D. Smale
Atmos. Meas. Tech., 9, 79–92, https://doi.org/10.5194/amt-9-79-2016,https://doi.org/10.5194/amt-9-79-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
How observations from automatic hail sensors in Switzerland shed light on local hailfall duration and compare with hailpad measurements
Jérôme Kopp, Agostino Manzato, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 16, 3487–3503, https://doi.org/10.5194/amt-16-3487-2023,https://doi.org/10.5194/amt-16-3487-2023, 2023
Short summary
A data-driven persistence test for robust (probabilistic) quality control of measured environmental time series: constant value episodes
Najmeh Kaffashzadeh
Atmos. Meas. Tech., 16, 3085–3100, https://doi.org/10.5194/amt-16-3085-2023,https://doi.org/10.5194/amt-16-3085-2023, 2023
Short summary
Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
Marcel Schröder, Tobias Bätge, Eberhard Bodenschatz, Michael Wilczek, and Gholamhossein Bagheri
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-63,https://doi.org/10.5194/amt-2023-63, 2023
Revised manuscript accepted for AMT
Short summary
A comparative evaluation of snowflake particle shape estimation techniques used by the Precipitation Imaging Package (PIP), Multi-Angle Snowflake Camera (MASC), and Two-Dimensional Video Disdrometer (2DVD)
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022,https://doi.org/10.5194/amt-15-6545-2022, 2022
Short summary
Comparison of GRUAN data products for Meisei iMS-100 and Vaisala RS92 radiosondes at Tateno, Japan
Shunsuke Hoshino, Takuji Sugidachi, Kensaku Shimizu, Eriko Kobayashi, Masatomo Fujiwara, and Masami Iwabuchi
Atmos. Meas. Tech., 15, 5917–5948, https://doi.org/10.5194/amt-15-5917-2022,https://doi.org/10.5194/amt-15-5917-2022, 2022
Short summary

Cited articles

Amiridis, V., Melas, D., Balis, D. S., Papayannis, A., Founda, D., Katragkou, E., Giannakaki, E., Mamouri, R. E., Gerasopoulos, E., and Zerefos, C.: Aerosol Lidar observations and model calculations of the Planetary Boundary Layer evolution over Greece, during the March 2006 Total Solar Eclipse, Atmos. Chem. Phys., 7, 6181–6189, https://doi.org/10.5194/acp-7-6181-2007, 2007. 
Anderson, R. C., Keefer, D. R., and Myers, O. E.: Atmospheric Pressure and Temperature Changes During the 7 March 1970 Solar Eclipse, J. Atmos. Sci., 29, 583–587, https://doi.org/10.1175/1520-0469(1972)029<0583:APATCD>2.0.CO;2, 1972. 
Anfossi, D., Schayes, G., Degrazia, G., and Goulart, A.: Atmospheric Turbulence Decay During the Solar Total Eclipse of 11 August 1999, Bound.-Lay. Meteorol., 111, 301–311, https://doi.org/10.1023/B:BOUN.0000016491.28111.43, 2004. 
Aplin, K. L., and Harrison, R.: Meteorological effects of the eclipse 0f 11 August 1999 in cloudy and clear conditions, P. Roy. Soc. London, 459A, 353–371, https://doi.org/10.1098/rspa.2002.1042, 2003. 
Colligan T., Fowler J., Godfrey J., and Spangrude C.: Detection of stratospheric gravity waves induced by the total solar eclipse of July 2, 2019, Sci. Rep.-UK, 10, 19428, https://doi.org/10.1038/s41598-020-75098-2, 2020. 
Download
Short summary
Atmospheric measurements were completed for two total solar eclipses. An eclipse-specific weather model was utilized to model the atmosphere before, during, and after the eclipse events. These measurements have enabled further validation of the model's performance in simulating atmospheric responses to total solar eclipses. The paper concludes by recommending further scientific analyses to be explored utilizing the unique datasets presented.