Articles | Volume 17, issue 12
https://doi.org/10.5194/amt-17-3751-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-3751-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transport of the Hunga volcanic aerosols inferred from Himawari-8/9 limb measurements
Fred Prata
CORRESPONDING AUTHOR
AIRES Pty Ltd, Mount Eliza, VIC 3930, Australia
School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Kent St, Bentley, Perth, WA 6102, Australia
Related authors
Lorenzo Guerrieri, Stefano Corradini, Luca Merucci, Dario Stelitano, Fred Prata, Linda Lambertucci, Camilo Naranjo, and Riccardo Biondi
Atmos. Meas. Tech., 18, 5281–5297, https://doi.org/10.5194/amt-18-5281-2025, https://doi.org/10.5194/amt-18-5281-2025, 2025
Short summary
Short summary
This work presents a new simplified ground-based thermal infrared (TIR) system capable of detecting and retrieving volcanic emissions during both the day and the night. Knowing the location of the instrument and the crater, it is possible to compute the geometry (height and thickness) of a volcanic plume. Furthermore, thanks to a specific filter positioned in front of one of the TIR cameras, it is possible to compute the sulfur dioxide (SO2) content emitted by the volcano at a safe distance from the vent.
Ilaria Petracca, Davide De Santis, Matteo Picchiani, Stefano Corradini, Lorenzo Guerrieri, Fred Prata, Luca Merucci, Dario Stelitano, Fabio Del Frate, Giorgia Salvucci, and Giovanni Schiavon
Atmos. Meas. Tech., 15, 7195–7210, https://doi.org/10.5194/amt-15-7195-2022, https://doi.org/10.5194/amt-15-7195-2022, 2022
Short summary
Short summary
The authors propose a near-real-time procedure for the detection of volcanic clouds by means of Sentinel-3 satellite data and neural networks. The algorithm results in an automatic image classification where ashy pixels are distinguished from other surfaces with remarkable accuracy. The model is considerably faster if compared to other approaches which are time consuming, case specific, and not automatic. The algorithm can be significantly helpful for emergency management during eruption events.
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Lorenzo Guerrieri, Stefano Corradini, Luca Merucci, Dario Stelitano, Fred Prata, Linda Lambertucci, Camilo Naranjo, and Riccardo Biondi
Atmos. Meas. Tech., 18, 5281–5297, https://doi.org/10.5194/amt-18-5281-2025, https://doi.org/10.5194/amt-18-5281-2025, 2025
Short summary
Short summary
This work presents a new simplified ground-based thermal infrared (TIR) system capable of detecting and retrieving volcanic emissions during both the day and the night. Knowing the location of the instrument and the crater, it is possible to compute the geometry (height and thickness) of a volcanic plume. Furthermore, thanks to a specific filter positioned in front of one of the TIR cameras, it is possible to compute the sulfur dioxide (SO2) content emitted by the volcano at a safe distance from the vent.
Ilaria Petracca, Davide De Santis, Matteo Picchiani, Stefano Corradini, Lorenzo Guerrieri, Fred Prata, Luca Merucci, Dario Stelitano, Fabio Del Frate, Giorgia Salvucci, and Giovanni Schiavon
Atmos. Meas. Tech., 15, 7195–7210, https://doi.org/10.5194/amt-15-7195-2022, https://doi.org/10.5194/amt-15-7195-2022, 2022
Short summary
Short summary
The authors propose a near-real-time procedure for the detection of volcanic clouds by means of Sentinel-3 satellite data and neural networks. The algorithm results in an automatic image classification where ashy pixels are distinguished from other surfaces with remarkable accuracy. The model is considerably faster if compared to other approaches which are time consuming, case specific, and not automatic. The algorithm can be significantly helpful for emergency management during eruption events.
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Cited articles
Amazon Web Services (AWS): Himwari-8 data, AWS [data set], https://noaa-himawari8.s3.amazonaws.com/index.html (last access: 31 October 2023), 2023a. a
Amazon Web Services (AWS): Himwari-9 data, AWS [data set], https://noaa-himawari9.s3.amazonaws.com/index.html (last access: 31 October 2023), 2023b. a
Baron, A., Chazette, P., Khaykin, S., Payen, G., Marquestaut, N., Bègue, N., and Duflot, V.: Early evolution of the stratospheric aerosol plume following the 2022 Hunga Tonga-Hunga Ha'apai eruption: Lidar observations from Reunion (21° S, 55° E), Geophys. Res. Lett., 50, e2022GL101751, https://doi.org/10.1029/2022GL101751, 2023. a
Boichu, M., Grandin, R., Blarel, L., Torres, B., Derimian, Y., Goloub, P., Brogniez, C., Chiapello, I., Dubovik, O., Mathurin, T., Pascal, N. Patou, M., and Riedi, J.: Growth and global persistence of stratospheric sulfate aerosols from the 2022 Hunga Tonga–Hunga Ha'apai volcanic eruption, J. Geophys. Res.-Atmos., 128, e2023JD039010, https://doi.org/10.1029/2023JD039010, 2023. a, b
Bourassa, A. E., Degenstein, D. A., and Llewellyn, E. J.: SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight, J. Quant. Spectrosc. Ra., 109, 52–73, 2008. a
CALIOP: Cloud-Aerosol Lidar with Orthogonal Polarization data, Atmospheric Science Data Center (ASDC) [data set], https://www-calipso.larc.nasa.gov/products/ (last access: 21 October 2023), 2023. a
Carn, S., Krotkov, N., Fisher, B., and Li, C.: Out of the blue: Volcanic SO2 emissions during the 2021–2022 eruptions of Hunga Tonga—Hunga Ha’apai (Tonga), Front. Earth Sci., 10, 976962, https://doi.org/10.3389/feart.2022.976962, 2022. a, b
Carr, J. L., Horváth, Á., Wu, D. L., and Friberg, M. D.: Stereo Plume Height and Motion Retrievals for the Record-Setting Hunga Tonga-Hunga Ha'apai Eruption of 15 January 2022, Geophys. Res. Lett., 49, e2022GL098131, https://doi.org/10.1029/2022GL098131, 2022. a
Duchamp, C., Wrana, F., Legras, B., Sellitto, P., Belhadji, R., and von Savigny, C.: Observation of the aerosol plume from the 2022 Hunga Tonga-Hunga Ha’apai eruption with SAGE III/ISS, Geophys. Res. Lett., 50, e2023GL105076, https://doi.org/10.1029/2023GL105076, 2023. a, b
Gupta, A. K., Bennartz, R., Fauria, K. E., and Mittal, T.: Eruption chronology of the December 2021 to January 2022 Hunga Tonga-Hunga Ha’apai eruption sequence, Communications Earth & Environment, 3, 314, https://doi.org/10.1038/s43247-022-00606-3, 2022. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.6860a573, 2023. a, b
Horváth, Á., Carr, J. L., Girina, O. A., Wu, D. L., Bril, A. A., Mazurov, A. A., Melnikov, D. V., Hoshyaripour, G. A., and Buehler, S. A.: Geometric estimation of volcanic eruption column height from GOES-R near-limb imagery – Part 1: Methodology, Atmos. Chem. Phys., 21, 12189–12206, https://doi.org/10.5194/acp-21-12189-2021, 2021. a, b, c, d, e, f, g
Kloss, C., Sellitto, P., Renard, J.-B., Baron, A., Bègue, N., Legras, B., Berthet, G., Briaud, E., Carboni, E., Duchamp, C., Duflot, V., Jacquet, P., Marquestaut, N., Metzger, J.-M., Payen, G., Ranaivombola, M., Roberts, T., Siddans, R., and Jégou, F.: Aerosol characterization of the stratospheric plume from the volcanic eruption at Hunga Tonga 15 January 2022, Geophys. Res. Lett., 49, e2022GL099394, https://doi.org/10.1029/2022GL099394, 2022. a
Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T., Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S., Prata, F. J., Vernier, J.-P., Schlager, H., Barnes, J. E., Antuña-Marrero, J.-C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J., Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger, L., Wilson, J. C., and Meland, B.: Stratospheric aerosol–Observations, processes, and impact on climate, Rev. Geophys., 54, 278–335, 2016. a
Legras, B., Duchamp, C., Sellitto, P., Podglajen, A., Carboni, E., Siddans, R., Grooß, J.-U., Khaykin, S., and Ploeger, F.: The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere, Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, 2022. a, b, c
Matoza, R. S., Fee, D., Assink, J. D., et al.: Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga, Science, 377, 95–100, https://doi.org/10.1126/science.abo7063, 2022. a, b
Millan, L., Santee, M. L., Lambert, A., Livesey, N. J., Werner, F., Schwartz, M. J., Pumphrey, H. C., Manney, G. L., Wang, Y., Su, H., Wu, L., Read, W. G., and Froidevaux, L.: The Hunga Tonga-Hunga Ha'apai hydration of the stratosphere, Geophys. Res. Lett., 49, e2022GL099381, https://doi.org/10.1029/2022GL099381, 2022. a, b, c, d, e
Miller, S. D., Noh, Y.-J., and Heidinger, A. K.: Liquid-top mixed-phase cloud detection from shortwave-infrared satellite radiometer observations: A physical basis, J. Geophys. Res.-Atmos., 119, 8245–8267, 2014. a
Mishra, M. K., Hoffmann, L., and Thapliyal, P. K.: Investigations on the Global Spread of the Hunga Tonga-Hunga Ha’apai Volcanic Eruption Using Space-Based Observations and Lagrangian Transport Simulations, Atmosphere, 13, 2055, https://doi.org/10.3390/atmos13122055, 2022. a, b
Nedoluha, G. E., Gomez, R. M., Boyd, I., Neal, H., Allen, D. R., and Lambert, A.: The Spread of the Hunga Tonga H2O Plume in the Middle Atmosphere Over the First Two Years Since Eruption, Authorea Preprints, ESS Open Archive, https://doi.org/10.22541/essoar.170688802.25763873/v1, 2024. a, b
Nishiyama, G., Namiki, N., Sugita, S., and Uno, S.: Utilization of a meteorological satellite as a space telescope: the lunar mid-infrared spectrum as seen by Himawari-8, Earth Planets Space, 74, 105, https://doi.org/10.1186/s40623-022-01662-x, 2022. a
Noh, Y.-J., Miller, S. D., Heidinger, A. K., Mace, G. G., Protat, A., and Alexander, S. P.: Satellite-based detection of daytime supercooled liquid-topped mixed-phase clouds over the Southern Ocean using the Advanced Himawari Imager, J. Geophys. Res.-Atmos., 124, 2677–2701, 2019. a
Otsuka, S.: Visualizing Lamb waves from a volcanic eruption using meteorological satellite Himawari-8, Geophys. Res. Lett., 49, e2022GL098324, https://doi.org/10.1029/2022GL098324, 2022. a
Palmer, K. F. and Williams, D.: Optical constants of sulfuric acid; application to the clouds of Venus?, Appl. Optics, 14, 208–219, 1975. a
Prata, A. T., Young, S. A., Siems, S. T., and Manton, M. J.: Lidar ratios of stratospheric volcanic ash and sulfate aerosols retrieved from CALIOP measurements, Atmos. Chem. Phys., 17, 8599–8618, https://doi.org/10.5194/acp-17-8599-2017, 2017. a
Proud, S.: Observation of polar mesospheric clouds by geostationary satellite sensors, IEEE Geosci. Remote S., 12, 1332–1336, 2015. a
Purkis, S. J., Ward, S. N., Fitzpatrick, N. M., Garvin, J. B., Slayback, D., Cronin, S. J., Palaseanu-Lovejoy, M., and Dempsey, A.: The 2022 Hunga-Tonga megatsunami: Near-field simulation of a once-in-a-century event, Science Advances, 9, eadf5493, https://doi.org/10.1126/sciadv.adf5493, 2023. a
Raspaud, M., Hoese, D., Dybbroe, A., Lahtinen, P., Devasthale, A., Itkin, M., Hamann, U., Rasmussen, L. Ø., Nielsen, E. S., Leppelt, T., Alexander Maul, A., Kliche, C., and Thorsteinsson, H.: PyTroll: An open-source, community-driven python framework to process earth observation satellite data, B. Am. Meteorol. Soc., 99, 1329–1336, 2018. a
Rozanov, A., Pohl, C., Arosio, C., Bourassa, A., Bramstedt, K., Malinina, E., Rieger, L., and Burrows, J. P.: Retrieval of stratospheric aerosol extinction coefficients from OMPS-LP measurements, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-358, 2024. a
Schoeberl, M., Wang, Y., Ueyama, R., Taha, G., and Yu, W.: The Cross Equatorial Transport of the Hunga Tonga-Hunga Ha′apai Eruption Plume, Geophys. Res. Lett., 50, e2022GL102443, https://doi.org/10.1029/2022GL102443, 2023. a
Schoeberl, M. R., Wang, Y., Ueyama, R., Taha, G., Jensen, E., and Yu, W.: Analysis and impact of the Hunga Tonga-Hunga Ha'apai stratospheric water vapor plume, Geophys. Res. Lett., 49, e2022GL100248, https://doi.org/10.1029/2022GL100248, 2022. a
Segelstein, D. J.: The complex refractive index of water, PhD thesis, University of Missouri–Kansas City, http://hdl.handle.net/10355/11599 (last access: 16 June 2024), 1981. a
Sellitto, P., Podglajen, A., Belhadji, R., Boichu, M., Carboni, E., Cuesta, J., Duchamp, C., Kloss, C., Siddans, R., Bègue, N., Blarel, L., Jegou, F., haykin, S., Renard, J.-B., and Legras, B.: The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022, Communications Earth & Environment, 3, 288, 2022. a, b
Sellitto, P., Siddans, R., Belhadji, R., Carboni, E., Legras, B., Podglajen, A., Duchamp, C., and Kerridge, B.: Observing the SO2 and Sulphate Aerosol Plumes from the 2022 Hunga Tonga-Hunga Ha'apai Eruption with IASI, Authorea Preprints, ESS Open Archive, https://doi.org/10.22541/essoar.169091894.48592907/v1, 2023. a
Su, X., Wang, L., Zhang, M., Qin, W., and Bilal, M.: A high-precision aerosol retrieval algorithm (HiPARA) for advanced Himawari imager (AHI) data: Development and verification, Remote Sens. Environ., 253, 112221, https://doi.org/10.1016/j.rse.2020.112221, 2021. a
Taha, G., Loughman, R., Colarco, P., Zhu, T., Thomason, L., and Jaross, G.: Tracking the 2022 Hunga Tonga-Hunga Ha'apai aerosol cloud in the upper and middle stratosphere using space-based observations, Geophys. Res. Lett., 49, e2022GL100091, https://doi.org/10.1029/2022GL100091, 2022. a
Taniguchi, D., Yamazaki, K., and Uno, S.: The Great Dimming of Betelgeuse seen by the Himawari-8 meteorological satellite, Nature Astronomy, 6, 930–935, 2022. a
Tsuda, T. T., Hozumi, Y., Kawaura, K., Hosokawa, K., Suzuki, H., and Nakamura, T.: Initial report on polar mesospheric cloud observations by Himawari-8, Atmos. Meas. Tech., 11, 6163–6168, https://doi.org/10.5194/amt-11-6163-2018, 2018. a
Van Eaton, A. R., Lapierre, J., Behnke, S. A., Vagasky, C., Schultz, C. J., Pavolonis, M., Bedka, K., and Khlopenkov, K.: Lightning rings and gravity waves: Insights into the giant eruption plume from Tonga's Hunga Volcano on 15 January 2022, Geophys. Res. Lett., 50, e2022GL102341, https://doi.org/10.1029/2022GL102341, 2023. a
Vergoz, J., Hupe, P., Listowski, C., Le Pichon, A., Garcés, M., Marchetti, E., Labazuy, P., Ceranna, L., Pilger, C., Gaebler, P., Näsholm, S. P., Brissaud, Q., Poli, P. Shapiro, N., De Negri, R., and Mialle, P.: IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis, Earth Planet. Sc. Lett., 591, 117639, https://doi.org/10.1016/j.epsl.2022.117639, 2022. a
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res.-Atmos., 113, D14220, https://doi.org/10.1029/2007JD009744, 2008. a
Wright, C. J., Hindley, N. P., Alexander, M. J., Barlow, M., Hoffmann, L., Mitchell, C. N., Prata, F., Bouillon, M., Carstens, J., Clerbaux, C., Osprey, S. M., Powell, N., Randall, C. E., and Yue, J.: Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha′apai eruption, Nature, 609, 741–746, https://doi.org/10.1038/s41586-022-05012-5, 2022. a, b, c
Yoshida, M., Kikuchi, M., Nagao, T. M., Murakami, H., Nomaki, T., and Higurashi, A.: Common retrieval of aerosol properties for imaging satellite sensors, J. Meteorol. Soc. Jpn, Ser. II, 96, 193–209, https://doi.org/10.2151/jmsj.2018-039, 2018. a
Zhou, G., Wang, J., Yin, Y., Hu, X., Letu, H., Sohn, B.-J., Yung, Y. L., and Liu, C.: Detecting supercooled water clouds using passive radiometer measurements, Geophys. Res. Lett., 49, e2021GL096111, https://doi.org/10.1029/2021GL096111, 2022. a
Zhu, Y., Bardeen, C. G., Tilmes, S., Mills, M. J., Wang, X., Harvey, V. L., Taha, G., Kinnison, D., Portmann, R. W., Yu, P., Rosenlof, K. H., Avery, M., Kloss, C., Li, C., Glanville, A. S., Millán, L., Deshler, T., Krotkov, N., and Toon, O. B.: Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption, Communications Earth & Environment, 3, 248, https://doi.org/10.1038/s43247-022-00580-w, 2022. a, b
Short summary
Geostationary satellite data have been used to measure the stratospheric aerosols from the explosive Hunga volcanic eruption by using the data in a novel way. The onboard imager views part of the Earth's limb and data from this region were analysed to generate vertical cross-sections of aerosols high in the atmosphere. The analyses show the hemispheric spread of the aerosols and their vertical structure in layers from 22–28 km in the stratosphere.
Geostationary satellite data have been used to measure the stratospheric aerosols from the...