Articles | Volume 17, issue 1
https://doi.org/10.5194/amt-17-57-2024
https://doi.org/10.5194/amt-17-57-2024
Research article
 | Highlight paper
 | 
09 Jan 2024
Research article | Highlight paper |  | 09 Jan 2024

Quantifying particulate matter optical properties and flow rate in industrial stack plumes from the PRISMA hyperspectral imager

Gabriel Calassou, Pierre-Yves Foucher, and Jean-François Léon

Related authors

Make the invisible visible: Reveal the Magnetic Field and Air Pollution to Foster Engagement in a Community-based Participatory Research Project
Mélina Macouin, Sonia Rousse, Sandrine Suchon, Loïc Drigo, Laure Laffont, Laurence Delville, Eva Vedel, Paul Antonio, Jean-François Léon, Arua da Silva Leite, Eva Schreck, and Fabrice Gangneron
EGUsphere, https://doi.org/10.5194/egusphere-2025-3118,https://doi.org/10.5194/egusphere-2025-3118, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
COMPARISON OF ESTIMATION METHODS TO QUANTIFY METHANE PLUME CONCENTRATION AT HIGH SPATIAL RESOLUTION FROM HYPERSPECTRAL IMAGES
N. Nesme, P-Y. Foucher, S. Doz, O. Lezeaux, and C. Camy-Peyret
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 411–417, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-411-2021,https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-411-2021, 2021
PM2.5 surface concentrations in southern West African urban areas based on sun photometer and satellite observations
Jean-François Léon, Aristide Barthélémy Akpo, Mouhamadou Bedou, Julien Djossou, Marleine Bodjrenou, Véronique Yoboué, and Cathy Liousse
Atmos. Chem. Phys., 21, 1815–1834, https://doi.org/10.5194/acp-21-1815-2021,https://doi.org/10.5194/acp-21-1815-2021, 2021
Short summary

Cited articles

Abreu, G. C., de Carvalho, J. A., da Silva, B. E. C., and Pedrini, R. H.: Operational and Environmental Assessment on the Use of Charcoal in Iron Ore Sinter Production, J. Clean. Prod., 101, 387–394, https://doi.org/10.1016/j.jclepro.2015.04.015, 2015. a
Almeida, S., Lage, J., Fernández, B., Garcia, S., Reis, M., and Chaves, P.: Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry, Sci. Total Environ., 521–522, 411–420, https://doi.org/10.1016/j.scitotenv.2015.03.112, 2015. a, b
Bagate, K., Meiring, J. J., Gerlofs-Nijland, M. E., Cassee, F. R., Wiegand, H., Osornio-Vargas, A., and Borm, P. J. A.: Ambient Particulate Matter Affects Cardiac Recovery in a Langendorff Ischemia Model, Inhal. Toxicol., 18, 633–643, https://doi.org/10.1080/08958370600742706, 2006. a
Baxter, L. L.: Char fragmentation and fly ash formation during pulverized-coal combustion, Combust. Flame, 90, 174–184, https://doi.org/10.1016/0010-2180(92)90118-9, 1992. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch, J.: MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code, in: 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014, IEEE, https://doi.org/10.1109/whispers.2014.8077573, 2014. ​​​​​​​ a
Download
Executive editor
Aerosol properties are usually retrieved on scales of 300-1000m, which is more than enough considering the spatial variability of aerosols. However, a higher spatial resolution is needed in some specific cases (volcanic eruptions, technogenic catastrophes, dust storms, military operations, and industrial pollution). Various parameters of the aerosol plume are needed, including the direction of propagation, spatial coverage, plume height, chemical composition and microstructure parameters. Such information is required for practical applications, including population warning systems. This paper is one of the first studies retrieving aerosol properties using spaceborne PRISMA hyperspectral 30m spatial resolution measurements. It opens the way for developing automatic procedures for monitoring aerosol plumes. The hyperspectral instrumentation can also be installed on airborne platforms and used to monitor particulate matter and gaseous components of pollution plumes.
Short summary
We propose analyzing the aerosol composition of plumes emitted by different industrial stacks using PRISMA satellite hyperspectral observations. Three industrial sites have been observed: a coal-fired power plant in South Africa, a steel plant in China, and gas flaring at an oil extraction site in Algeria. Aerosol optical thickness and particle radius are retrieved within the plumes. The mass flow rate of particulate matter is estimated in the plume using the integrated mass enhancement method.
Share