Articles | Volume 17, issue 1
https://doi.org/10.5194/amt-17-57-2024
https://doi.org/10.5194/amt-17-57-2024
Research article
 | Highlight paper
 | 
09 Jan 2024
Research article | Highlight paper |  | 09 Jan 2024

Quantifying particulate matter optical properties and flow rate in industrial stack plumes from the PRISMA hyperspectral imager

Gabriel Calassou, Pierre-Yves Foucher, and Jean-François Léon

Related authors

AEROSOL PLUMES CHARACTERIZATION BY HYPERSPECTRAL IMAGES COUPLED WITH SENTINEL-2 PRODUCTS
G. Calassou, P.-Y. Foucher, and J.-F. Leon
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 791–797, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-791-2020,https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-791-2020, 2020

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Transport of the Hunga volcanic aerosols inferred from Himawari-8/9 limb measurements
Fred Prata
Atmos. Meas. Tech., 17, 3751–3764, https://doi.org/10.5194/amt-17-3751-2024,https://doi.org/10.5194/amt-17-3751-2024, 2024
Short summary
A near-global multiyear climate data record of the fine-mode and coarse-mode components of atmospheric pure dust
Emmanouil Proestakis, Antonis Gkikas, Thanasis Georgiou, Anna Kampouri, Eleni Drakaki, Claire L. Ryder, Franco Marenco, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 17, 3625–3667, https://doi.org/10.5194/amt-17-3625-2024,https://doi.org/10.5194/amt-17-3625-2024, 2024
Short summary
Innovative aerosol hygroscopic growth study from Mie–Raman–fluorescence lidar and microwave radiometer synergy
Robin Miri, Olivier Pujol, Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Thierry Podvin, and Fabrice Ducos
Atmos. Meas. Tech., 17, 3367–3375, https://doi.org/10.5194/amt-17-3367-2024,https://doi.org/10.5194/amt-17-3367-2024, 2024
Short summary
Evaluation of calibration performance of a low-cost particulate matter sensor using collocated and distant NO2
Kabseok Ko, Seokheon Cho, and Ramesh R. Rao
Atmos. Meas. Tech., 17, 3303–3322, https://doi.org/10.5194/amt-17-3303-2024,https://doi.org/10.5194/amt-17-3303-2024, 2024
Short summary
Geostationary aerosol retrievals of extreme biomass burning plumes during the 2019–2020 Australian bushfires
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024,https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary

Cited articles

Abreu, G. C., de Carvalho, J. A., da Silva, B. E. C., and Pedrini, R. H.: Operational and Environmental Assessment on the Use of Charcoal in Iron Ore Sinter Production, J. Clean. Prod., 101, 387–394, https://doi.org/10.1016/j.jclepro.2015.04.015, 2015. a
Almeida, S., Lage, J., Fernández, B., Garcia, S., Reis, M., and Chaves, P.: Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry, Sci. Total Environ., 521–522, 411–420, https://doi.org/10.1016/j.scitotenv.2015.03.112, 2015. a, b
Bagate, K., Meiring, J. J., Gerlofs-Nijland, M. E., Cassee, F. R., Wiegand, H., Osornio-Vargas, A., and Borm, P. J. A.: Ambient Particulate Matter Affects Cardiac Recovery in a Langendorff Ischemia Model, Inhal. Toxicol., 18, 633–643, https://doi.org/10.1080/08958370600742706, 2006. a
Baxter, L. L.: Char fragmentation and fly ash formation during pulverized-coal combustion, Combust. Flame, 90, 174–184, https://doi.org/10.1016/0010-2180(92)90118-9, 1992. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch, J.: MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code, in: 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014, IEEE, https://doi.org/10.1109/whispers.2014.8077573, 2014. ​​​​​​​ a
Download
Executive editor
Aerosol properties are usually retrieved on scales of 300-1000m, which is more than enough considering the spatial variability of aerosols. However, a higher spatial resolution is needed in some specific cases (volcanic eruptions, technogenic catastrophes, dust storms, military operations, and industrial pollution). Various parameters of the aerosol plume are needed, including the direction of propagation, spatial coverage, plume height, chemical composition and microstructure parameters. Such information is required for practical applications, including population warning systems. This paper is one of the first studies retrieving aerosol properties using spaceborne PRISMA hyperspectral 30m spatial resolution measurements. It opens the way for developing automatic procedures for monitoring aerosol plumes. The hyperspectral instrumentation can also be installed on airborne platforms and used to monitor particulate matter and gaseous components of pollution plumes.
Short summary
We propose analyzing the aerosol composition of plumes emitted by different industrial stacks using PRISMA satellite hyperspectral observations. Three industrial sites have been observed: a coal-fired power plant in South Africa, a steel plant in China, and gas flaring at an oil extraction site in Algeria. Aerosol optical thickness and particle radius are retrieved within the plumes. The mass flow rate of particulate matter is estimated in the plume using the integrated mass enhancement method.