Articles | Volume 17, issue 1
https://doi.org/10.5194/amt-17-57-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-57-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying particulate matter optical properties and flow rate in industrial stack plumes from the PRISMA hyperspectral imager
Gabriel Calassou
ONERA “The French Aerospace Lab”, Département Optique et Techniques Associées (DOTA), 2 avenue Edouard Belin, 31055 Toulouse, France
Pierre-Yves Foucher
ONERA “The French Aerospace Lab”, Département Optique et Techniques Associées (DOTA), 2 avenue Edouard Belin, 31055 Toulouse, France
Jean-François Léon
CORRESPONDING AUTHOR
Laboratoire d'Aérologie, CNRS Université Toulouse 3, 14 avenue Edouard Belin, 31400 Toulouse, France
Related authors
No articles found.
Mélina Macouin, Sonia Rousse, Sandrine Suchon, Loïc Drigo, Laure Laffont, Laurence Delville, Eva Vedel, Paul Antonio, Jean-François Léon, Arua da Silva Leite, Eva Schreck, and Fabrice Gangneron
EGUsphere, https://doi.org/10.5194/egusphere-2025-3118, https://doi.org/10.5194/egusphere-2025-3118, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
We designed a hands-on science workshop using magnets to explore air pollution with citizens and children. The activities sparked curiosity, and encouraged participants to join a community air quality project. Our results show that discovery-based activities help create meaningful exchanges between science and society.
N. Nesme, P-Y. Foucher, S. Doz, O. Lezeaux, and C. Camy-Peyret
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 411–417, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-411-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-411-2021, 2021
Jean-François Léon, Aristide Barthélémy Akpo, Mouhamadou Bedou, Julien Djossou, Marleine Bodjrenou, Véronique Yoboué, and Cathy Liousse
Atmos. Chem. Phys., 21, 1815–1834, https://doi.org/10.5194/acp-21-1815-2021, https://doi.org/10.5194/acp-21-1815-2021, 2021
Short summary
Short summary
We have investigated the aerosol optical depth (AOD) and its relation to PM2.5 surface concentrations in southern West Africa based on in situ observations (2015–2017 period) and MODIS satellite data (2003–2019). MODIS AODs are validated using a regional network of handheld and automatic sun photometers. Satellite-derived PM2.5 shows an increasing trend during the short dry period that is possibly linked to the increase in anthropogenic emission over this area.
Cited articles
Abreu, G. C., de Carvalho, J. A., da Silva, B. E. C., and Pedrini, R. H.: Operational and Environmental Assessment on the Use of Charcoal in Iron Ore Sinter Production, J. Clean. Prod., 101, 387–394, https://doi.org/10.1016/j.jclepro.2015.04.015, 2015. a
Almeida, S., Lage, J., Fernández, B., Garcia, S., Reis, M., and Chaves, P.: Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry, Sci. Total Environ., 521–522, 411–420, https://doi.org/10.1016/j.scitotenv.2015.03.112, 2015. a, b
Bagate, K., Meiring, J. J., Gerlofs-Nijland, M. E., Cassee, F. R., Wiegand, H., Osornio-Vargas, A., and Borm, P. J. A.: Ambient Particulate Matter Affects Cardiac Recovery in a Langendorff Ischemia Model, Inhal. Toxicol., 18, 633–643, https://doi.org/10.1080/08958370600742706, 2006. a
Baxter, L. L.: Char fragmentation and fly ash formation during pulverized-coal combustion, Combust. Flame, 90, 174–184, https://doi.org/10.1016/0010-2180(92)90118-9, 1992. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch, J.: MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code, in: 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014, IEEE, https://doi.org/10.1109/whispers.2014.8077573, 2014. a
Bhanarkar, A., Gavane, A., Tajne, D., Tamhane, S., and Nema, P.: Composition and size distribution of particules emissions from a coal-fired power plant in India, Fuel, 87, 2095–2101, https://doi.org/10.1016/j.fuel.2007.11.001, 2008. a
Bhatia, N., Stein, A., Reusen, I., and Tolpekin, V. A.: An Optimization Approach to Estimate and Calibrate Column Water Vapour for Hyperspectral Airborne Data, Int. J. Remote Sens., 39, 2480–2505, https://doi.org/10.1080/01431161.2018.1425565, 2018. a
Bo, X., Jia, M., Xue, X., Tang, L., Mi, Z., Wang, S., Cui, W., Chang, X., Ruan, J., Dong, G., Zhou, B., and Davis, S. J.: Effect of Strengthened Standards on Chinese Ironmaking and Steelmaking Emissions, Nature Sustainability, 4, 811–820, https://doi.org/10.1038/s41893-021-00736-0, 2021. a
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous Particles: An Investigative Review, Aerosol Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006. a
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013. a
Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A., and Erzinger, J.: A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech., 3, 781–811, https://doi.org/10.5194/amt-3-781-2010, 2010. a
Brigot, G., Colin-Koeniguer, E., Plyer, A., and Janez, F.: Adaptation and Evaluation of an Optical Flow Method Applied to Coregistration of Forest Remote Sensing Images, IEEE J. Sel. Top. Appl., 9, 2923–2939, https://doi.org/10.1109/jstars.2016.2578362, 2016. a
Brock, C. A., Trainer, M., Ryerson, T. B., Neuman, J. A., Parrish, D. D., Holloway, J. S., Nicks, D. K., Frost, G. J., Hübler, G., Fehsenfeld, F. C., Wilson, J. C., Reeves, J. M., Lafleur, B. G., Hilbert, H., Atlas, E. L., Donnelly, S. G., Schauffler, S. M., Stroud, V. R., and Wiedinmyer, C.: Particle growth in urban and industrial plumes in Texas, J. Geophys. Res.-Atmos., 108, 4111, https://doi.org/10.1029/2002jd002746, 2003. a
Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., and Kaufman, J. D.: Particulate Matter Air Pollution and Cardiovascular Disease, Circulation, 121, 2331–2378, https://doi.org/10.1161/cir.0b013e3181dbece1, 2010. a
Calassou, G., Foucher, P.-Y., and Léon, J.-F.: Industrial plume properties retrieved by optimal estimation using combined hyperspectral and Sentinel-2 data, Remote Sens., 13, 1865, https://doi.org/10.3390/rs13101865, 2021. a, b
Cantrell, B. K. and Whitby, K. T.: Aerosol Size Distributions and Aerosol Volume Formation for a Coal-Fired Power Plant Plume, Atmos. Environ., 12, 323–333, https://doi.org/10.1016/0004-6981(78)90214-7, 1978. a
Caseiro, A., Gehrke, B., Rücker, G., Leimbach, D., and Kaiser, J. W.: Gas flaring activity and black carbon emissions in 2017 derived from the Sentinel-3A Sea and Land Surface Temperature Radiometer, Earth Syst. Sci. Data, 12, 2137–2155, https://doi.org/10.5194/essd-12-2137-2020, 2020. a
Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., Miglietta, F., Genesio, L., Guanter, L., Damm, A., Pérez-López, S., Scheffler, D., Tagliabue, G., Panigada, C., Rascher, U., Dowling, T. P. F., Giardino, C., and Colombo, R.: The PRISMA Imaging Spectroscopy Mission: Overview and First Performance Analysis, Remote Sens. Environ., 262, 112499, https://doi.org/10.1016/j.rse.2021.112499, 2021. a
Cusworth, D. H., Duren, R. M., Thorpe, A. K., Pandey, S., Maasakkers, J. D., Aben, I., Jervis, D., Varon, D. J., Jacob, D. J., Randles, C. A., Gautam, R., Omara, M., Schade, G. W., Dennison, P. E., Frankenberg, C., Gordon, D., Lopinto, E., and Miller, C. E.: Multisatellite Imaging of a Gas Well Blowout Enables Quantification of Total Methane Emissions, Geophys. Res. Lett., 48, e2020GL090864, https://doi.org/10.1029/2020gl090864, 2021. a
Dall'Osto, M., Booth, M. J., Smith, W., Fisher, R., and Harrison, R. M.: A Study of the Size Distributions and the Chemical Characterization of Airborne Particles in the Vicinity of a Large Integrated Steelworks, Aerosol Sci. Tech., 42, 981–991, https://doi.org/10.1080/02786820802339587, 2008. a
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I.: Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations, J. Atmos. Sci., 59, 590–608, https://doi.org/10.1175/1520-0469(2002)059<0590:voaaop>2.0.co;2, 2002. a
Ehrlich, C., Noll, G., Kalkoff, W., Baumbach, G., and Dreiseidler, A.: PM10, PM2.5 and PM1.0 – Emissions from industrial plants – Results from measurement programmes in Germany, Atmos. Environ., 41, 6236–6254, https://doi.org/10.1016/j.atmosenv.2007.03.059, 2007. a, b, c, d
Elvidge, C., Zhizhin, M., Hsu, F.-C., and Baugh, K.: VIIRS Nightfire: Satellite Pyrometry at Night, Remote Sens., 5, 4423–4449, https://doi.org/10.3390/rs5094423, 2013. a
Elvidge, C., Zhizhin, M., Baugh, K., Hsu, F.-C., and Ghosh, T.: Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data, Energies, 9, 14, https://doi.org/10.3390/en9010014, 2016. a
ESA: Copernicus Open Access Hub, https://scihub.copernicus.eu/, last access: 21 December 2023. a
Fawole, O. G., Cai, X.-M., and MacKenzie, A.: Gas flaring and resultant air pollution: A review focusing on black carbon, Environ. Pollut., 216, 182–197, https://doi.org/10.1016/j.envpol.2016.05.075, 2016. a
Foucher, P.-Y., Deliot, P., Poutier, L., Duclaux, O., Raffort, V., Roustan, Y., Temime-roussel, B., Durand, A., and Wortham, H.: Aerosol Plume Characterization From Multitemporal Hyperspectral Analysis, IEEE J. Sel. Top. Appl., 12, 2429–2438, https://doi.org/10.1109/jstars.2019.2905052, 2019. a
Frankenberg, C., Thorpe, A. K., Thompson, D. R., Hulley, G., Kort, E. A., Vance, N., Borchardt, J., Krings, T., Gerilowski, K., Sweeney, C., Conley, S., Bue, B. D., Aubrey, A. D., Hook, S., and Green, R. O.: Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region, P. Natl. Acad. Sci. USA, 113, 9734–9739, https://doi.org/10.1073/pnas.1605617113, 2016. a, b
Fung, K.: Particulate Carbon Speciation by MnO2 Oxidation, Aerosol Sci. Tech., 12, 122–127, https://doi.org/10.1080/02786829008959332, 1990. a
Gasteiger, J. and Wiegner, M.: MOPSMAP v1.0: a versatile tool for the modeling of aerosol optical properties, Geosci. Model Dev., 11, 2739–2762, https://doi.org/10.5194/gmd-11-2739-2018, 2018. a
Guanter, L., Irakulis-Loitxate, I., Gorroño, J., Sánchez-García, E., Cusworth, D. H., Varon, D. J., Cogliati, S., and Colombo, R.: Mapping Methane Point Emissions with the PRISMA Spaceborne Imaging Spectrometer, Remote Sens. Environ., 265, 112671, https://doi.org/10.1016/j.rse.2021.112671, 2021. a, b
Guinot, B., Gonzalez, B., Faria, J. P. D., and Kedia, S.: Particulate matter characterization in a steelworks using conventional sampling and innovative lidar observations, Particuology, 28, 43–51, https://doi.org/10.1016/j.partic.2015.10.002, 2016. a
Hand, J. L. and Malm, W. C.: Review of aerosol mass scattering efficiencies from ground-based measurements since 1990, J. Geophys. Res., 112, D16203, https://doi.org/10.1029/2007jd008484, 2007. a
Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and Clouds: The Software Package OPAC, B. Am. Meteorol. Soc., 79, 831–844, https://doi.org/10.1175/1520-0477(1998)079<0831:opoaac>2.0.co;2, 1998. a
Hleis, D., Fernández-Olmo, I., Ledoux, F., Kfoury, A., Courcot, L., Desmonts, T., and Courcot, D.: Chemical Profile Identification of Fugitive and Confined Particle Emissions from an Integrated Iron and Steelmaking Plant, J. Hazard. Mater., 250–251, 246–255, https://doi.org/10.1016/j.jhazmat.2013.01.080, 2013. a
Huang, K. and Fu, J. S.: A global gas flaring black carbon emission rate dataset from 1994 to 2012, Scientific Data, 3, 160104, https://doi.org/10.1038/sdata.2016.104, 2016. a
Huang, X., Hu, J., Qin, F., Quan, W., Cao, R., Fan, M., and Wu, X.: Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China), Int. J. Env. Res. Pub. He., 14, 1589, https://doi.org/10.3390/ijerph14121589, 2017. a
Italian Space Agency: http://prisma.asi.it/missionselect/, 21 December 2023. a
Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J., and Frankenberg, C.: Satellite observations of atmospheric methane and their value for quantifying methane emissions, Atmos. Chem. Phys., 16, 14371–14396, https://doi.org/10.5194/acp-16-14371-2016, 2016. a
Janzen, J.: Extinction of light by highly nonspherical strongly absorbing colloidal particles: spectrophotometric determination of volume distributions for carbon blacks, Appl. Optics, 19, 2977, https://doi.org/10.1364/ao.19.002977, 1980. a
Kaufman, Y. J., Tanré, D., Gordon, H. R., Nakajima, T., Lenoble, J., Frouin, R., Grassl, H., Herman, B. M., King, M. D., and Teillet, P. M.: Passive Remote Sensing of Tropospheric Aerosol and Atmospheric Correction for the Aerosol Effect, J. Geophys. Res.-Atmos., 102, 16815–16830, 1997. a
Kleinhans, U., Wieland, C., Frandsen, F. J., and Spliethoff, H.: Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior, Prog. Energ. Combust., 68, 65–168, https://doi.org/10.1016/j.pecs.2018.02.001, 2018. a
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017. a
Kondo, Y., Sahu, L., Moteki, N., Khan, F., Takegawa, N., Liu, X., Koike, M., and Miyakawa, T.: Consistency and Traceability of Black Carbon Measurements Made by Laser-Induced Incandescence, Thermal-Optical Transmittance, and Filter-Based Photo-Absorption Techniques, Aerosol Sci. Tech., 45, 295–312, https://doi.org/10.1080/02786826.2010.533215, 2011. a
Krings, T., Gerilowski, K., Buchwitz, M., Reuter, M., Tretner, A., Erzinger, J., Heinze, D., Pflüger, U., Burrows, J. P., and Bovensmann, H.: MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates, Atmos. Meas. Tech., 4, 1735–1758, https://doi.org/10.5194/amt-4-1735-2011, 2011. a
Krings, T., Gerilowski, K., Buchwitz, M., Hartmann, J., Sachs, T., Erzinger, J., Burrows, J. P., and Bovensmann, H.: Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data, Atmos. Meas. Tech., 6, 151–166, https://doi.org/10.5194/amt-6-151-2013, 2013. a
Lauvaux, T., Giron, C., Mazzolini, M., d'Aspremont, A., Duren, R., Cusworth, D., Shindell, D., and Ciais, P.: Global Assessment of Oil and Gas Methane Ultra-Emitters, Science, 375, 557–561, https://doi.org/10.1126/science.abj4351, 2022. a
Leoni, C., Hovorka, J., Dočekalová, V., Cajthaml, T., and Marvanová, S.: Source Impact Determination using Airborne and Ground Measurements of Industrial Plumes, Environ. Sci. Technol., 50, 9881–9888, https://doi.org/10.1021/acs.est.6b02304, 2016. a, b, c
Linnik, V. G., Minkina, T. M., Bauer, T. V., Saveliev, A. A., and Mandzhieva, S. S.: Geochemical assessment and spatial analysis of heavy metals pollution around coal-fired power station, Environ. Geochem. Hlth., 42, 4087–4100, https://doi.org/10.1007/s10653-019-00361-z, 2019. a
Liou, K.-N.: An Introduction to Atmospheric Radiation, no. v. 84 in International Geophysics Series, 2nd edn., Academic Press, Amsterdam, Boston, ISBN 978-0-12-451451-5, 2002. a
Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., and Gascon, F.: Sen2Cor for Sentinel-2, in: Image and Signal Processing for Remote Sensing XXIII, edited by: Bruzzone, L., Bovolo, F., and Benediktsson, J. A., SPIE, https://doi.org/10.1117/12.2278218, 2017. a
Mbengue, S., Alleman, L. Y., and Flament, P.: Metal-bearing fine particle sources in a coastal industrialized environment, Atmos. Res., 183, 202–211, https://doi.org/10.1016/j.atmosres.2016.08.014, 2017. a
Medalia, A. and Richards, L.: Tinting strength of carbon black, J. Colloid Interf. Sci., 40, 233–252, https://doi.org/10.1016/0021-9797(72)90013-6, 1972. a
Miesch, C., Poutier, L., Achard, V., Briottet, X., Lenot, X., and Boucher, Y.: Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery, IEEE T. Geoscience Remote, 43, 1552–1562, https://doi.org/10.1109/TGRS.2005.847793, 2005. a, b
Minkina, T., Konstantinova, E., Bauer, T., Mandzhieva, S., Sushkova, S., Chaplygin, V., Burachevskaya, M., Nazarenko, O., Kizilkaya, R., Gülser, C., and Maksimov, A.: Environmental and human health risk assessment of potentially toxic elements in soils around the largest coal-fired power station in Southern Russia, Environ. Geochem. Hlth., 43, 2285–2300, https://doi.org/10.1007/s10653-020-00666-4, 2020. a
Mishchenko, M. I., Travis, L. D., Kahn, R. A., and West, R. A.: Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids, J. Geophys. Res.-Atmos., 102, 16831–16847, https://doi.org/10.1029/96jd02110, 1997. a
Nascimento, J. and Dias, J.: Vertex component analysis: a fast algorithm to unmix hyperspectral data, IEEE T. Geosci. Remote, 43, 898–910, https://doi.org/10.1109/tgrs.2005.844293, 2005. a
Nesme, N., Marion, R., Lezeaux, O., Doz, S., Camy-Peyret, C., and Foucher, P.-Y.: Joint Use of In-Scene Background Radiance Estimation and Optimal Estimation Methods for Quantifying Methane Emissions Using PRISMA Hyperspectral Satellite Data: Application to the Korpezhe Industrial Site, Remote Sens., 13, 4992, https://doi.org/10.3390/rs13244992, 2021. a
Ninomiya, Y., Zhang, L., Sato, A., and Dong, Z.: Influence of Coal Particle Size on Particulate Matter Emission and Its Chemical Species Produced during Coal Combustion, Fuel Process. Technol., 85, 1065–1088, https://doi.org/10.1016/j.fuproc.2003.10.012, 2004. a
Oravisjärvi, K., Timonen, K., Wiikinkoski, T., Ruuskanen, A., Heinänen, K., and Ruuskanen, J.: Source contributions to PM2.5 particles in the urban air of a town situated close to a steel works, Atmos. Environ., 37, 1013–1022, https://doi.org/10.1016/s1352-2310(02)01048-8, 2003. a
Philippets, Y., Foucher, P.-Y., Marion, R., and Briottet, X.: Anthropogenic aerosol emissions mapping and characterization by imaging spectroscopy – application to a metallurgical industry and a petrochemical complex, Int. J. Remote Sens., 40, 364–406, https://doi.org/10.1080/01431161.2018.1513665, 2018. a
Pope, C. A. and Dockery, D. W.: Health Effects of Fine Particulate Air Pollution: Lines that Connect, J. Air Waste Manage., 56, 709–742, https://doi.org/10.1080/10473289.2006.10464485, 2006. a
Pope, C. A., Turner, M. C., Burnett, R. T., Jerrett, M., Gapstur, S. M., Diver, W. R., Krewski, D., and Brook, R. D.: Relationships Between Fine Particulate Air Pollution, Cardiometabolic Disorders, and Cardiovascular Mortality, Circ. Res., 116, 108–115, https://doi.org/10.1161/circresaha.116.305060, 2015. a
Richards, L., Anderson, J. A., Blumenthal, D. L., Brandt, A. A., Mcdonald, J., Waters, N., Macias, E. S., and Bhardwaja, P. S.: The chemistry, aerosol physics, and optical properties of a western coal-fired power plant plume, Atmos. Environ., 15, 2111–2134, https://doi.org/10.1016/0004-6981(81)90245-6, 1981. a
Riffault, V., Arndt, J., Marris, H., Mbengue, S., Setyan, A., Alleman, L. Y., Deboudt, K., Flament, P., Augustin, P., Delbarre, H., and Wenger, J.: Fine and Ultrafine Particles in the Vicinity of Industrial Activities: A Review, Crit. Rev. Env. Sci. Tec., 45, 2305–2356, https://doi.org/10.1080/10643389.2015.1025636, 2015. a
Rodger, A.: SODA: A New Method of in-Scene Atmospheric Water Vapor Estimation and Post-Flight Spectral Recalibration for Hyperspectral Sensors: Application to the HyMap Sensor at Two Locations, Remote Sens. Environ., 115, 536–547, https://doi.org/10.1016/j.rse.2010.09.022, 2011. a
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, World Scientific, https://doi.org/10.1142/3171, 2000. a, b
Saarnio, K., Frey, A., Niemi, J. V., Timonen, H., Rönkkö, T., Karjalainen, P., Vestenius, M., Teinilä, K., Pirjola, L., Niemelä, V., Keskinen, J., Häyrinen, A., and Hillamo, R.: Chemical composition and size of particles in emissions of a coal-fired power plant with flue gas desulfurization, J. Aerosol Sci., 73, 14–26, https://doi.org/10.1016/j.jaerosci.2014.03.004, 2014. a, b, c, d
Schwarz, J. P., Holloway, J. S., Katich, J. M., McKeen, S., Kort, E. A., Smith, M. L., Ryerson, T. B., Sweeney, C., and Peischl, J.: Black Carbon Emissions from the Bakken Oil and Gas Development Region, Environ. Sci. Technol. Lett., 2, 281–285, https://doi.org/10.1021/acs.estlett.5b00225, 2015. a
Shin, D., Kim, Y., Hong, K.-J., Lee, G., Park, I., Kim, H.-J., Kim, Y.-J., Han, B., and Hwang, J.: Measurement and Analysis of PM10 and PM2.5 from Chimneys of Coal-fired Power Plants Using a Light Scattering Method, Aerosol Air Qual. Res., 22, 210378, https://doi.org/10.4209/aaqr.210378, 2022. a, b
Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V. M., and Novigatsky, A. N.: Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions, Atmos. Chem. Phys., 13, 8833–8855, https://doi.org/10.5194/acp-13-8833-2013, 2013. a
Sylvestre, A., Mizzi, A., Mathiot, S., Masson, F., Jaffrezo, J. L., Dron, J., Mesbah, B., Wortham, H., and Marchand, N.: Comprehensive chemical characterization of industrial PM2.5 from steel industry activities, Atmos. Environ., 152, 180–190, https://doi.org/10.1016/j.atmosenv.2016.12.032, 2017. a
Tang, L., Xue, X., Jia, M., Jing, H., Wang, T., Zhen, R., Huang, M., Tian, J., Guo, J., Li, L., Bo, X., and Wang, S.: Iron and Steel Industry Emissions and Contribution to the Air Quality in China, Atmos. Environ., 237, 117668, https://doi.org/10.1016/j.atmosenv.2020.117668, 2020. a
Tratt, D. M., Young, S. J., Lynch, D. K., Buckland, K. N., Johnson, P. D., Hall, J. L., Westberg, K. R., Polak, M. L., Kasper, B. P., and Qian, J.: Remotely sensed ammonia emission from fumarolic vents associated with a hydrothermally active fault in the Salton Sea Geothermal Field, California, J. Geophys. Res.-Atmos., 116, D21308, https://doi.org/10.1029/2011jd016282, 2011. a
Tratt, D. M., Buckland, K. N., Hall, J. L., Johnson, P. D., Keim, E. R., Leifer, I., Westberg, K., and Young, S. J.: Airborne visualization and quantification of discrete methane sources in the environment, Remote Sens. Environ., 154, 74–88, https://doi.org/10.1016/j.rse.2014.08.011, 2014. a
Tsai, J.-H., Lin, K.-H., Chen, C.-Y., Ding, J.-Y., Choa, C.-G., and Chiang, H.-L.: Chemical constituents in particulate emissions from an integrated iron and steel facility, J. Hazard. Mater., 147, 111–119, https://doi.org/10.1016/j.jhazmat.2006.12.054, 2007. a, b
Varon, D. J., Jacob, D. J., McKeever, J., Jervis, D., Durak, B. O. A., Xia, Y., and Huang, Y.: Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes, Atmos. Meas. Tech., 11, 5673–5686, https://doi.org/10.5194/amt-11-5673-2018, 2018. a, b, c, d
Varon, D. J., Jervis, D., McKeever, J., Spence, I., Gains, D., and Jacob, D. J.: High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations, Atmos. Meas. Tech., 14, 2771–2785, https://doi.org/10.5194/amt-14-2771-2021, 2021. a, b, c
Vermote, E. F., Tanré, D., Deuze, J.-L., Herman, M., and Morcette, J.-J.: Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview, IEEE T. Geosci. Remote, 35, 675–686, 1997. a
Weitkamp, E. A., Lipsky, E. M., Pancras, P. J., Ondov, J. M., Polidori, A., Turpin, B. J., and Robinson, A. L.: Fine particle emission profile for a large coke production facility based on highly time-resolved fence line measurements, Atmos. Environ., 39, 6719–6733, https://doi.org/10.1016/j.atmosenv.2005.06.028, 2005. a
Weyant, C. L., Shepson, P. B., Subramanian, R., Cambaliza, M. O. L., Heimburger, A., McCabe, D., Baum, E., Stirm, B. H., and Bond, T. C.: Black Carbon Emissions from Associated Natural Gas Flaring, Environ. Sci. Technol., 50, 2075–2081, https://doi.org/10.1021/acs.est.5b04712, 2016. a
Wu, H., Wall, T., Liu, G., and Bryant, G.: Ash Liberation from Included Minerals during Combustion of Pulverized Coal: The Relationship with Char Structure and Burnout, Energ. Fuel., 13, 1197–1202, https://doi.org/10.1021/ef990081o, 1999. a
Xu, Y., Liu, X., Cui, J., Chen, D., Xu, M., Pan, S., Zhang, K., and Gao, X.: Field Measurements on the Emission and Removal of PM2.5 from Coal-Fired Power Stations: 4. PM Removal Performance of Wet Electrostatic Precipitators, Energ. Fuel., 30, 7465–7473, https://doi.org/10.1021/acs.energyfuels.6b00426, 2016. a
Yang, H., Zhang, L., Ong, C., Rodger, A., Liu, J., Sun, X., Zhang, H., Jian, X., and Tong, Q.: Improved Aerosol Optical Thickness, Columnar Water Vapor, and Surface Reflectance Retrieval from Combined CASI and SASI Airborne Hyperspectral Sensors, Remote Sens., 9, 217, https://doi.org/10.3390/rs9030217, 2017. a
Yokoya, N., Yairi, T., and Iwasaki, A.: Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion, IEEE T. Geosci. Remote, 50, 528–537, https://doi.org/10.1109/tgrs.2011.2161320, 2012. a
Zhang, C., Yao, Q., and Sun, J.: Characteristics of particulate matter from emissions of four typical coal-fired power plants in China, Fuel Process. Technol., 86, 757–768, https://doi.org/10.1016/j.fuproc.2004.08.006, 2004. a
Executive editor
Aerosol properties are usually retrieved on scales of 300-1000m, which is more than enough considering the spatial variability of aerosols. However, a higher spatial resolution is needed in some specific cases (volcanic eruptions, technogenic catastrophes, dust storms, military operations, and industrial pollution). Various parameters of the aerosol plume are needed, including the direction of propagation, spatial coverage, plume height, chemical composition and microstructure parameters. Such information is required for practical applications, including population warning systems.
This paper is one of the first studies retrieving aerosol properties using spaceborne PRISMA hyperspectral 30m spatial resolution measurements. It opens the way for developing automatic procedures for monitoring aerosol plumes. The hyperspectral instrumentation can also be installed on airborne platforms and used to monitor particulate matter and gaseous components of pollution plumes.
Aerosol properties are usually retrieved on scales of 300-1000m, which is more than enough...
Short summary
We propose analyzing the aerosol composition of plumes emitted by different industrial stacks using PRISMA satellite hyperspectral observations. Three industrial sites have been observed: a coal-fired power plant in South Africa, a steel plant in China, and gas flaring at an oil extraction site in Algeria. Aerosol optical thickness and particle radius are retrieved within the plumes. The mass flow rate of particulate matter is estimated in the plume using the integrated mass enhancement method.
We propose analyzing the aerosol composition of plumes emitted by different industrial stacks...