Articles | Volume 18, issue 12
https://doi.org/10.5194/amt-18-2721-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-2721-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite-based detection of deep-convective clouds: the sensitivity of infrared methods and implications for cloud climatology
Space Research Centre, Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw, Poland
Izabela Wojciechowska
Space Research Centre, Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw, Poland
Related authors
Żaneta Nguyen Huu, Andrzej Z. Kotarba, and Agnieszka Wypych
Atmos. Meas. Tech., 18, 3897–3915, https://doi.org/10.5194/amt-18-3897-2025, https://doi.org/10.5194/amt-18-3897-2025, 2025
Short summary
Short summary
Clouds affect Earth's energy balance, with high-altitude cirrus clouds contributing to atmospheric warming. While active satellite sensors are the most accurate for detecting cirrus clouds, they are not ideal for long-term studies. This study compares Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data, testing six MODIS methods, one MODIS-based test, and two International Satellite Cloud Climatology Project (ISCCP) tests. The all tests consolidation (ATC) was the most effective, achieving 72.98 % accuracy during daytime and 59.50 % at night, making it relatively accurate for creating a cirrus mask.
Andrzej Z. Kotarba
Atmos. Meas. Tech., 15, 4307–4322, https://doi.org/10.5194/amt-15-4307-2022, https://doi.org/10.5194/amt-15-4307-2022, 2022
Short summary
Short summary
Space profiling lidars offer a unique insight into cloud properties in Earth’s atmosphere, and are considered the most reliable source of cloud information. However, lidar-based cloud climatologies are infrequently sampled: every 7 to 91 d, and only along the ground track. This study evaluated how accurate are the cloud data from existing (CALIPSO, ICESat-2, Aeolus) and planned (EarthCARE) space lidars, when compared to a cloud climatology obtained with observations taken every day.
Izabela Wojciechowska and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2025-4784, https://doi.org/10.5194/egusphere-2025-4784, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Marine clouds play a major role in cooling the Earth by reflecting sunlight, but predicting how bright they appear is not straightforward. We used satellite data from 2003 to 2021 and examined whether the brightness of marine clouds can be explained by their main properties. We found that the relationship varies across the globe, and that regional differences need to be considered to better understand cloud impact on climate.
Żaneta Nguyen Huu, Andrzej Z. Kotarba, and Agnieszka Wypych
Atmos. Meas. Tech., 18, 3897–3915, https://doi.org/10.5194/amt-18-3897-2025, https://doi.org/10.5194/amt-18-3897-2025, 2025
Short summary
Short summary
Clouds affect Earth's energy balance, with high-altitude cirrus clouds contributing to atmospheric warming. While active satellite sensors are the most accurate for detecting cirrus clouds, they are not ideal for long-term studies. This study compares Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data, testing six MODIS methods, one MODIS-based test, and two International Satellite Cloud Climatology Project (ISCCP) tests. The all tests consolidation (ATC) was the most effective, achieving 72.98 % accuracy during daytime and 59.50 % at night, making it relatively accurate for creating a cirrus mask.
Andrzej Z. Kotarba
Atmos. Meas. Tech., 15, 4307–4322, https://doi.org/10.5194/amt-15-4307-2022, https://doi.org/10.5194/amt-15-4307-2022, 2022
Short summary
Short summary
Space profiling lidars offer a unique insight into cloud properties in Earth’s atmosphere, and are considered the most reliable source of cloud information. However, lidar-based cloud climatologies are infrequently sampled: every 7 to 91 d, and only along the ground track. This study evaluated how accurate are the cloud data from existing (CALIPSO, ICESat-2, Aeolus) and planned (EarthCARE) space lidars, when compared to a cloud climatology obtained with observations taken every day.
Cited articles
Ackerman, S. A.: Global satellite observations of negative brightness temperature differences between 11 and 6.7 µm, J. Atmos. Sci., 53, 2803–2812, https://doi.org/10.1175/1520-0469(1996)053<2803:GSOONB>2.0.CO;2, 1996.
Afzali Gorooh, V., Kalia, S., Nguyen, P., Hsu, K., Sorooshian, S., Ganguly, S., and Nemani, R. R.: Deep Neural Network Cloud-Type Classification (DeepCTC) Model and Its Application in Evaluating PERSIANN-CCS, Remote Sens., 12, 316, https://doi.org/10.3390/rs12020316, 2020.
Ai, Y., Li, J., Shi, W., Schmit, T. J., Cao, C., and Li, W.: Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements, J. Geophys. Res., 122, 1700–1712, https://doi.org/10.1002/2016JD025408, 2017.
Apke, J. M., Mecikalski, J. R., Bedka, K., McCaul, E. W., Homeyer, C. R., and Jewett, C. P.: Relationships between Deep Convection Updraft Characteristics and Satellite-Based Super Rapid Scan Mesoscale Atmospheric Motion Vector–Derived Flow, Mon. Weather Rev., 146, 3461–3480, https://doi.org/10.1175/MWR-D-18-0119.1, 2018.
Aumann, H. H. and Ruzmaikin, A.: Frequency of deep convective clouds in the tropical zone from 10 years of AIRS data, Atmos. Chem. Phys., 13, 10795–10806, https://doi.org/10.5194/acp-13-10795-2013, 2013.
Aumann, H. H., Ruzmaikin, A., and Teixeira, J.: Frequency of severe storms and global warming, Geophys. Res. Lett., 35, L19805, https://doi.org/10.1029/2008GL034562, 2008.
Aumann, H. H., Behrangi, A., and Wang, Y.: Increased Frequency of Extreme Tropical Deep Convection: AIRS Observations and Climate Model Predictions, Geophys. Res. Lett., 45, 13530–13537, https://doi.org/10.1029/2018GL079423, 2018.
Baatsen, M., Haarsma, R. J., Van Delden, A. J., and de Vries, H.: Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean, Clim. Dynam., 45, 949–964, https://doi.org/10.1007/s00382-014-2329-8, 2015.
Barnes, W. L., Pagano, T. S., and Salomonson, V. V.: Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AMI, IEEE T. Geosci. Remote, 36, 1088–1100, https://doi.org/10.1109/36.700993, 1998.
Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., and Greenwald, T.: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients, J. Appl. Meteorol. Climatol., 49, 181–202, https://doi.org/10.1175/2009JAMC2286.1, 2010.
Bender, F. A.-M., Ramanathan, V., and Tselioudis, G.: Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift, Clim. Dynam., 38, 2037–2053, https://doi.org/10.1007/s00382-011-1065-6, 2012.
Berthou, S., J Roberts, M., Vannière, B., Ban, N., Belušić, D., Caillaud, C., Crocker, T., de Vries, H., Dobler, A., Harris, D., Kendon, E. J., Landgren, O., and Manning, C.: Convection in future winter storms over Northern Europe, Environ. Res. Lett., 17, 114055, https://doi.org/10.1088/1748-9326/aca03a, 2022.
Candlish, L. M., Raddatz, R. L., Gunn, G. G., Asplin, M. G., and Barber, D. G.: A Validation of CloudSat and CALIPSO's Temperature, Humidity, Cloud Detection, and Cloud Base Height over the Arctic Marine Cryosphere, Atmos.-Ocean, 51, 249–264, https://doi.org/10.1080/07055900.2013.798582, 2013.
Ceppi, P. and Hartmann, D. L.: Clouds and the atmospheric circulation response to warming, J. Climate, 29, 783–799, https://doi.org/10.1175/JCLI-D-15-0394.1, 2016.
Chen, Q., Yin, X., Li, Y., Zheng, P., Chen, M., and Xu, Q.: Recognition of Severe Convective Cloud Based on the Cloud Image Prediction Sequence from FY-4A, Remote Sens., 15, 4612, https://doi.org/10.3390/rs15184612, 2023.
Chen, T., Rossow, W. B., and Zhang, Y.: Radiative Effects of Cloud-Type Variations, J. Climate, 13, 264–286, https://doi.org/10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2, 2000.
Cohen, J.: A Coefficient of Agreement for Nominal Scales, Educ. Psychol. Meas., 20, 37–46, https://doi.org/10.1177/001316446002000104, 1960.
Cooperative Institute for Research in the Atmosphere (CIRA): 2B-CLDCLASS-LIDAR, Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University [data set], https://www.cloudsat.cira.colostate.edu/data-products/2b-cldclass-lidar, last access: 23 June 2025.
da Silva Neto, C. P.: A method for convective storm detection using satellite data, Atmósfera, 29, 343–358, https://doi.org/10.20937/ATM.2016.29.04.05, 2016.
DiCiccio, T. J. and Efron, B.: Bootstrap confidence intervals, Stat. Sci., 11, 189–212, https://doi.org/10.1214/ss/1032280214, 1996.
Doelling, D. R., Nguyen, L., and Minnis, P.: On the use of deep convective clouds to calibrate AVHRR data, Earth Observing Systems IX, Proc. SPIE 5542, 281–289, https://doi.org/10.1117/12.560047, 2004.
Eastman, R. and Warren, S. G.: Diurnal Cycles of Cumulus, Cumulonimbus, Stratus, Stratocumulus, and Fog from Surface Observations over Land and Ocean, J. Climate, 27, 2386–2404, https://doi.org/10.1175/JCLI-D-13-00352.1, 2014.
Efron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979.
European Environmental Agency: Economic losses and fatalities caused by weather – and climate – related extreme events in EU Member States (1980–2023) – per hazard type, European Environmental Agency, https://www.eea.europa.eu/en/analysis/indicators/economic-losses-from-climate-related/economic-losses-and-fatalities (last access: 23 June 2025), 2024.
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT): High Rate SEVIRI Level 1.5 Image Data - MSG - 0 degree, European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) [data set], https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:HRSEVIRI, last access: 23 June 2025.
Gong, X., Li, Z., Li, J., Moeller, C. C., Cao, C., Wang, W., and Menzel, W. P.: Intercomparison Between VIIRS and CrIS by Taking Into Account the CrIS Subpixel Cloudiness and Viewing Geometry, J. Geophys. Res.-Atmos., 123, 5335–5345, 2018.
Govaerts, Y. M., Rüthrich, F., John, V. O., and Quast, R.: Climate Data Records from Meteosat First Generation Part I: Simulation of Accurate Top-of-Atmosphere Spectral Radiance over Pseudo-Invariant Calibration Sites for the Retrieval of the In-Flight Visible Spectral Response, Remote. Sens., 10, 1959, https://doi.org/10.3390/rs10121959, 2018.
Gunshor, M. M., Schmit, T. J., and Menzel, W. P.: Intercalibration of the Infrared Window and Water Vapor Channels on Operational Geostationary Environmental Satellites Using a Single Polar-Orbiting Satellite, J. Atmos. Ocean. Technol., 21, 61–68, https://doi.org/10.1175/1520-0426(2004)021<0061:IOTIWA>2.0.CO;2, 2004.
Hahn, C. J., Rossow, W. B., and Warren, S. G.: ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface Observations, J. Climate, 14, 11–28, https://doi.org/10.1175/1520-0442(2001)014<0011:ICPAWS>2.0.CO;2, 2001.
Hendon, H. H. and Woodberry, K.: The diurnal cycle of tropical convection, J. Geophys. Res.-Atmos., 98, 16623–16637, https://doi.org/10.1029/93JD00525, 1993.
Hoffmann, L. and Spang, R.: An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses, Atmos. Chem. Phys., 22, 4019–4046, https://doi.org/10.5194/acp-22-4019-2022, 2022.
Holmlund, K., Grandell, J., Schmetz, J., Stuhlmann, R., Bojkov, B., Munro, R., Lekouara, M., Coppens, D., Viticchie, B., August, T., Theodore, B., Watts, P., Dobber, M., Fowler, G., Bojinski, S., Schmid, A., Salonen, K., Tjemkes, S., Aminou, D., and Blythe, P.: Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit, B. Am. Meteorol. Soc., 102, E990–E1015, https://doi.org/10.1175/BAMS-D-19-0304.1, 2021.
Hong, G., Heygster, G., and Rodriguez, C. A. M.: Effect of cirrus clouds on the diurnal cycle of tropical deep convective clouds, J. Geophys. Res.-Atmos., 111, D06209, https://doi.org/10.1029/2005JD006208, 2006.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez, A., Wandinger, U., Wehr, T., and Van Zadelhoff, G. J.: The earthcare satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation, B. Am. Meteorol. Soc., 96, 1311–1332, https://doi.org/10.1175/BAMS-D-12-00227.1, 2015.
Jurkovic, P. M., Mahovic, N. S., and Pocakal, D.: Lightning, overshooting top and hail characteristics for strong convective storms in Central Europe, Atmos. Res., 161–162, 153–168, 2015.
Kaps, A., Lauer, A., Kazeroni, R., Stengel, M., and Eyring, V.: Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology, Earth Syst. Sci. Data, 16, 3001–3016, https://doi.org/10.5194/essd-16-3001-2024, 2024.
Kodamana, R. and Fletcher, C. G.: Validation of CloudSat-CPR Derived Precipitation Occurrence and Phase Estimates across Canada, Atmosphere, 12, 295, https://doi.org/10.3390/atmos12030295, 2021.
Kolat, U., Menzel, W. P., Olson, E., and Frey, R.: Very high cloud detection in more than two decades of HIRS data, J. Geophys. Res.-Atmos., 118, 3278–3284, https://doi.org/10.1029/2012JD018496, 2013.
Kollias, P., Albrecht, B. A., Lhermitte, R., and Savtchenko, A.: Radar Observations of Updrafts, Downdrafts, and Turbulence in Fair-Weather Cumuli, J. Atmos. Sci., 58, 1750–1766, https://doi.org/10.1175/1520-0469(2001)058<1750:ROOUDA>2.0.CO;2, 2001.
Kubar, T. L., Hartmann, D. L., and Wood, R.: Radiative and Convective Driving of Tropical High Clouds, J. Climate, 20, 5510–5526, https://doi.org/10.1175/2007JCLI1628.1, 2007.
Lehmann, J. and Coumou, D.: The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes, Sci. Rep., 5, 17491, https://doi.org/10.1038/srep17491, 2015.
Lu, J., Vecchi, G. A., and Reichler, T.: Expansion of the Hadley cell under global warming, Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443, 2007.
Mapes, B. E. and Houze, R. A.: Cloud Clusters and Superclusters over the Oceanic Warm Pool, Mon. Weather Rev., 121, 1398–1416, https://doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2, 1993.
Martin, D. W., Kohrs, R. A., Mosher, F. R., Medaglia, C. M., and Adamo, C.: Over-Ocean Validation of the Global Convective Diagnostic, J. Appl. Meteorol. Climatol., 47, 525–543, https://doi.org/10.1175/2007JAMC1525.1, 2008.
MODIS Characterization Support Team (MCST): MODIS Geolocation Fields Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MYD03.061, 2017a.
MODIS Characterization Support Team (MCST): MODIS 1km Calibrated Radiances Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MYD021KM.061, 2017b.
Mu, Q., Wu, A., Xiong, X., Doelling, D. R., Angal, A., Chang, T., and Bhatt, R.: Optimization of a Deep Convective Cloud Technique in Evaluating the Long-Term Radiometric Stability of MODIS Reflective Solar Bands, Remote Sens., 9, 535, https://doi.org/10.3390/rs9060535, 2017.
Musil, D. J., Christopher, S. A., Deola, R. A., and Smith, P. L.: Some Interior Observations of Southeastern Montana Hailstorms, J. Appl. Meteorol. Climatol., 30, 1596–1612, https://doi.org/10.1175/1520-0450(1991)030<1596:SIOOSM>2.0.CO;2, 1991.
NASA Goddard Space Flight Center: MODIS/Aqua Level 1B Calibrated Radiances, NASA Goddard Space Flight Center [data set], https://doi.org/10.5067/MODIS/MYD06_L2.006, 2015.
Nesbitt, S. W., Cifelli, R., and Rutledge, S. A.: Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features, Mon. Weather Rev., 134, 2702–2721, https://doi.org/10.1175/MWR3200.1, 2006.
Norris, J. R.: Low Cloud Type over the Ocean from Surface Observations. Part II: Geographical and Seasonal Variations, J. Climate, 11, 383–403, https://doi.org/10.1175/1520-0442(1998)011<0383:LCTOTO>2.0.CO;2, 1998.
Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riédi, J. C., and Frey, R. A.: The MODIS cloud products: Algorithms and examples from terra, IEEE T. Geosci. Remote, 41, 459–472, https://doi.org/10.1109/TGRS.2002.808301, 2003.
Rossow, W. B. and Schiffer, R. A.: Advances in Understanding Clouds from ISCCP, B. Am. Meteorol. Soc., 80, 2261–2287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999.
Sarkar, T., Dey, S., Ganguly, D., Di Girolamo, L., and Hong, Y.: Comparative assessment of a near-global view of individual cloud types from space-borne active and passive sensors and ground-based observations, Int. J. Climatol., 42, 8073–8088, https://doi.org/10.1002/joc.7693, 2022.
Sassen, K. and Wang, Z.: Classifying clouds around the globe with the CloudSat radar: 1-year of results, Geophys. Res. Lett., 35, L04805, https://doi.org/10.1029/2007GL032591, 2008.
Sassen, K., Wang, Z., and Liu, D.: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements, J. Geophys. Res.-Atmos., 113, D00A12, https://doi.org/10.1029/2008JD009972, 2008.
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., and Mitrescu, C.: The cloudsat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation, B. Am. Meteorol. Soc., 83, 1771–1790 + 1742, https://doi.org/10.1175/BAMS-83-12-1771, 2002.
Stern, D. P. and Bryan, G. H.: Using Simulated Dropsondes to Understand Extreme Updrafts and Wind Speeds in Tropical Cyclones, Mon. Weather Rev., 146, 3901–3925, https://doi.org/10.1175/MWR-D-18-0041.1, 2018.
Taszarek, M., Allen, J., Púčik, T., Groenemeijer, P., Czernecki, B., Kolendowicz, L., Lagouvardos, K., Kotroni, V., and Schulz, W.: A climatology of thunderstorms across Europe from a synthesis of multiple data sources, J. Climate, 32, 1813–1837, https://doi.org/10.1175/JCLI-D-18-0372.1, 2019.
Taszarek, M., Allen, J. T., Groenemeijer, P., Edwards, R., Brooks, H. E., Chmielewski, V., and Enno, S.-E.: Severe Convective Storms across Europe and the United States. Part I: Climatology of Lightning, Large Hail, Severe Wind, and Tornadoes, J. Climate, 33, 10239–10261, https://doi.org/10.1175/JCLI-D-20-0345.1, 2020.
Tissier, A.-S. and Legras, B.: Convective sources of trajectories traversing the tropical tropopause layer, Atmos. Chem. Phys., 16, 3383–3398, https://doi.org/10.5194/acp-16-3383-2016, 2016.
Vincent, M. A. and Salcedo, C.: The insertion of CloudSat and Calipso into the A-Train constellation, edited by: Lafontaine, J. D., DeLafontaine, J., Treder, J., Soyka, M. T., and Sims, J. A., Astrodyn. 2003, PTS 1-3, 116 AIAA/AAS Astrodynamics Specialist Conference, 3–7 August 2003, Big Sky, Montana, USA, 1401–1418, ISBN 0877035091, 2003.
Wall, C. J., Hartmann, D. L., Thieman, M. M., Smith, W. L., and Minnis, P.: The Life Cycle of Anvil Clouds and the Top-of-Atmosphere Radiation Balance over the Tropical West Pacific, J. Climate, 31, 10059–10080, https://doi.org/10.1175/JCLI-D-18-0154.1, 2018.
Wang, C. and Prinn, R. G.: On the roles of deep convective clouds in tropospheric chemistry, J. Geophys. Res.-Atmos., 105, 22269–22297, https://doi.org/10.1029/2000JD900263, 2000.
Wang, C., Luo, Z. J., and Huang, X.: Parallax correction in collocating CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) observations: Method and application to convection study, J. Geophys. Res.-Atmos., 116, D17201, https://doi.org/10.1029/2011JD016097, 2011.
Wang, D., Yang, C. A., and Diao, M.: Validation of Satellite-Based Cloud Phase Distributions Using Global-Scale In Situ Airborne Observations, Earth Sp. Sci., 11, e2023EA003355, https://doi.org/10.1029/2023EA003355, 2024.
Wang, Z. and Sassen, K.: Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors, J. Appl. Meteorol., 40, 1665–1682, https://doi.org/10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2, 2001.
Wehr, T., Kubota, T., Tzeremes, G., Wallace, K., Nakatsuka, H., Ohno, Y., Koopman, R., Rusli, S., Kikuchi, M., Eisinger, M., Tanaka, T., Taga, M., Deghaye, P., Tomita, E., and Bernaerts, D.: The EarthCARE mission – science and system overview, Atmos. Meas. Tech., 16, 3581–3608, https://doi.org/10.5194/amt-16-3581-2023, 2023.
Winker, D. M., Pelon, J. R., and McCormick, M. P.: The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds, Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space, 23–27 October 2002, Hangzhou, China, Lidar Remote Sens. Ind. Environ. Monit. III, 4893, https://doi.org/10.1117/12.466539, 2003.
Yang, K., Wang, Z., Deng, M., and Dettmann, B.: Improved tropical deep convective cloud detection using MODIS observations with an active sensor trained machine learning algorithm, Remote Sens. Environ., 297, 113762, https://doi.org/10.1016/j.rse.2023.113762, 2023.
Zou, L., Hoffmann, L., Griessbach, S., Spang, R., and Wang, L.: Empirical evidence for deep convection being a major source of stratospheric ice clouds over North America, Atmos. Chem. Phys., 21, 10457–10475, https://doi.org/10.5194/acp-21-10457-2021, 2021.
Short summary
The research investigates methods for detecting deep convective clouds (DCCs) using satellite infrared data, essential for understanding long-term climate trends. By validating three popular detection methods against lidar–radar data, it found moderate accuracy (below 75 %), emphasizing the importance of fine-tuning thresholds regionally. The study shows how small threshold changes significantly affect the climatology of severe storms.
The research investigates methods for detecting deep convective clouds (DCCs) using satellite...