Articles | Volume 18, issue 12
https://doi.org/10.5194/amt-18-2721-2025
https://doi.org/10.5194/amt-18-2721-2025
Research article
 | 
26 Jun 2025
Research article |  | 26 Jun 2025

Satellite-based detection of deep-convective clouds: the sensitivity of infrared methods and implications for cloud climatology

Andrzej Z. Kotarba and Izabela Wojciechowska

Related authors

Evaluation of the operational MODIS cloud mask product for detecting cirrus clouds
Żaneta Nguyen Huu, Andrzej Z. Kotarba, and Agnieszka Wypych
Atmos. Meas. Tech., 18, 3897–3915, https://doi.org/10.5194/amt-18-3897-2025,https://doi.org/10.5194/amt-18-3897-2025, 2025
Short summary
Impact of the revisit frequency on cloud climatology for CALIPSO, EarthCARE, Aeolus, and ICESat-2 satellite lidar missions
Andrzej Z. Kotarba
Atmos. Meas. Tech., 15, 4307–4322, https://doi.org/10.5194/amt-15-4307-2022,https://doi.org/10.5194/amt-15-4307-2022, 2022
Short summary

Cited articles

Ackerman, S. A.: Global satellite observations of negative brightness temperature differences between 11 and 6.7 µm, J. Atmos. Sci., 53, 2803–2812, https://doi.org/10.1175/1520-0469(1996)053<2803:GSOONB>2.0.CO;2, 1996. 
Afzali Gorooh, V., Kalia, S., Nguyen, P., Hsu, K., Sorooshian, S., Ganguly, S., and Nemani, R. R.: Deep Neural Network Cloud-Type Classification (DeepCTC) Model and Its Application in Evaluating PERSIANN-CCS, Remote Sens., 12, 316, https://doi.org/10.3390/rs12020316, 2020.​​​​​​​ 
Ai, Y., Li, J., Shi, W., Schmit, T. J., Cao, C., and Li, W.: Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements, J. Geophys. Res., 122, 1700–1712, https://doi.org/10.1002/2016JD025408, 2017. 
Apke, J. M., Mecikalski, J. R., Bedka, K., McCaul, E. W., Homeyer, C. R., and Jewett, C. P.: Relationships between Deep Convection Updraft Characteristics and Satellite-Based Super Rapid Scan Mesoscale Atmospheric Motion Vector–Derived Flow, Mon. Weather Rev., 146, 3461–3480, https://doi.org/10.1175/MWR-D-18-0119.1, 2018. 
Aumann, H. H. and Ruzmaikin, A.: Frequency of deep convective clouds in the tropical zone from 10 years of AIRS data, Atmos. Chem. Phys., 13, 10795–10806, https://doi.org/10.5194/acp-13-10795-2013, 2013. 
Download
Short summary
The research investigates methods for detecting deep convective clouds (DCCs) using satellite infrared data, essential for understanding long-term climate trends. By validating three popular detection methods against lidar–radar data, it found moderate accuracy (below 75 %), emphasizing the importance of fine-tuning thresholds regionally. The study shows how small threshold changes significantly affect the climatology of severe storms.
Share