Articles | Volume 18, issue 13
https://doi.org/10.5194/amt-18-2877-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-2877-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and comparison of empirical models for all-sky downward longwave radiation estimation at the ocean surface using long-term observations
Jianghai Peng
State Key Laboratory of Remote Sensing Science, jointly sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
China and Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ 85281, USA
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
Bo Jiang
CORRESPONDING AUTHOR
State Key Laboratory of Remote Sensing Science, jointly sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
China and Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Hui Liang
State Key Laboratory of Remote Sensing Science, jointly sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
China and Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Shaopeng Li
State Key Laboratory of Remote Sensing Science, jointly sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
China and Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Jiakun Han
State Key Laboratory of Remote Sensing Science, jointly sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
China and Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Thomas C. Ingalls
Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ 85281, USA
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
Jie Cheng
State Key Laboratory of Remote Sensing Science, jointly sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
China and Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Yunjun Yao
State Key Laboratory of Remote Sensing Science, jointly sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
China and Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Kun Jia
State Key Laboratory of Remote Sensing Science, jointly sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
China and Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Xiaotong Zhang
State Key Laboratory of Remote Sensing Science, jointly sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China
China and Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Related authors
No articles found.
Hui Liang, Shunlin Liang, Bo Jiang, Tao He, Feng Tian, Jianglei Xu, Wenyuan Li, Fengjiao Zhang, and Husheng Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-136, https://doi.org/10.5194/essd-2025-136, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes 1 km daily mean land surface sensible heat flux (H) and land surface – air temperature difference (Tsa) datasets on the global scale during 2000–2020. The datasets were developed using a data-driven approach and rigorously validated against in situ observations and existing H and Tsa datasets, demonstrating both high accuracy and exceptional spatial resolution.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Cited articles
Aase, J. K. and Idso, S. B.: A comparison of two formula types for calculating long-wave radiation from the atmosphere, Water Resour. Res., 14, 623–625, https://doi.org/10.1029/WR014i004p00623, 1978.
Alados, I., Foyo-Moreno, I., and Alados-Arboledas, L.: Estimation of downwelling longwave irradiance under all-sky conditions, Int. J. Climatol., 32, 781–793, https://doi.org/10.1002/joc.2307, 2012.
Alappattu, D. P., Wang, Q., Yamaguchi, R., Lind, R. J., Reynolds, M., and Christman, A. J.: Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies, J. Geophys. Res.-Oceans, 122, 6470–6481, https://doi.org/10.1002/2017JC012688, 2017.
Berdahl, P.: Retrospective on the resource for radiative cooling, Journal of Photonics for Energy, 11, 042106, https://doi.org/10.1117/1.JPE.11.042106, 2021.
Bignami, F., Marullo, S., Santoleri, R., and Schiano, M. E.: Longwave radiation budget in the Mediterranean Sea, J. Geophys. Res.-Oceans, 100, 2501–2514, https://doi.org/10.1029/94JC02496, 1995.
Bilbao, J. and de Miguel, A. H.: Estimation of Daylight Downward Longwave Atmospheric Irradiance under Clear-Sky and All-Sky Conditions, J. Appl. Meteorol. Clim., 46, 878–889, https://doi.org/10.1175/JAM2503.1, 2007.
Bourlès, B., Lumpkin, R., McPhaden, M. J., Hernandez, F., Nobre, P., Campos, E., Yu, L., Planton, S., Busalacchi, A., Moura, A. D., Servain, J., and Trotte, J.: THE PIRATA PROGRAM, B. Am. Meteorol. Soc., 89, 1111–1126, https://doi.org/10.1175/2008BAMS2462.1,2008.
Brunt, D.: Notes on radiation in the atmosphere. I, Q. J. Roy. Meteor. Soc., 58, 389–420, https://doi.org/10.1002/qj.49705824704, 1932.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resour. Res., 11, 742–744, https://doi.org/10.1029/WR011i005p00742, 1975.
Buck, A. L.: New equations for computing vapor pressure and enhancement factor, J. Appl. Meteorol. Clim., 20, 1527–1532, https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2, 1981.
Caniaux, G., Brut, A., Bourras, D., Giordani, H., Paci, A., Prieur, L., and Reverdin, G.: A 1 year sea surface heat budget in the northeastern Atlantic basin during the POMME experiment: 1. Flux estimates, J. Geophys. Res.-Oceans, 110, C07S02, https://doi.org/10.1029/2004JC002596, 2005.
Centurioni, L. R., Turton, J., Lumpkin, R., Braasch, L., Brassington, G., Chao, Y., Charpentier, E., Chen, Z., Corlett, G., and Dohan, K.: Global in situ observations of essential climate and ocean variables at the air–sea interface, Frontiers in Marine Science, 6, 419, https://doi.org/10.3389/fmars.2019.00419, 2019.
Clark, N. E., Eber, L. E., Laurs, R. M., Renneer, J. A., and Saur, J. F. T.: Heat exchange between ocean and atmosphere in the eastern North Pacific for 1961–71, NOAA Tech. Rep. NMFS SSRF-682, U.S. National Marine Fisheries Service, Washington, D.C., p. 4, https://repository.library.noaa.gov/view/noaa/11864 (last access: 29 June 2025), 1974.
Cleugh, H. A., Leuning, R., Mu, Q., and Running, S. W.: Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sens. Environ., 106, 285–304, https://doi.org/10.1016/j.rse.2006.07.007, 2007.
Cottier, F. R., Nilsen, F., Inall, M., Gerland, S., Tverberg, V., and Svendsen, H.: Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation, Geophys. Res. Lett., 34, L10607, https://doi.org/10.1029/2007GL029948, 2007.
Cronin, M. F., Gentemann, C. L., Edson, J., Ueki, I., Bourassa, M., Brown, S., Clayson, C. A., Fairall, C. W., Farrar, J. T., and Gille, S. T.: Air-sea fluxes with a focus on heat and momentum, Frontiers in Marine Science, 6, 430, https://doi.org/10.3389/fmars.2019.00430, 2019.
Deremble, B., Wienders, N., and Dewar, W.: CheapAML: A simple, atmospheric boundary layer model for use in ocean-only model calculations, Mon. Weather Rev., 141, 809–821, https://doi.org/10.1175/MWR-D-11-00254.1, 2013.
Diak, G. R., Bland, W. L., Mecikalski, J. R., and Anderson, M. C.: Satellite-based estimates of longwave radiation for agricultural applications, Agr. Forest Meteorol., 103, 349–355, https://doi.org/10.1016/S0168-1923(00)00141-6, 2000.
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D., Nguyen, C., Wielicki, B. A., Young, D. F., and Sun, M.: Geostationary enhanced temporal interpolation for CERES flux products, J. Atmos. Ocean. Tech., 30, 1072–1090, https://doi.org/10.1175/JTECH-D-12-00136.1, 2013.
Donlon, C., Minnett, P., Gentemann, C., Nightingale, T., Barton, I., Ward, B., and Murray, M.: Toward improved validation of satellite sea surface skin temperature measurements for climate research, J. Climate, 15, 353–369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002.
Dorman, C., Enriquez, A., and Friehe, C.: Structure of the lower atmosphere over the northern California coast during winter, Mon. Weather Rev., 123, 2384–2404, https://doi.org/10.1175/1520-0493(1995)123<2384:SOTLAO>2.0.CO;2, 1995.
Douville, H., Royer, J.-F., and Mahfouf, J.-F.: A new snow parameterization for the Météo-France climate model: Part I: validation in stand-alone experiments, Clim. Dynam., 12, 21–35, https://doi.org/10.1007/BF00208760, 1995.
Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqué, M., Dell'Aquilla, A., Elizalde, A., Gualdi, S., Jacob, D., and L'hévéder, B.: Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models, Clim. Dynam., 39, 1859–1884, https://doi.org/10.1007/s00382-011-1261-4, 2012.
ECMWF (European Centre for Medium-Range Weather Forecasts): https://www.ecmwf.int/en/forecasts/dataset/ecmwf- reanalysis-v5, last access: 1 July 2025.
Ellingson, R. G.: Surface longwave fluxes from satellite observations: A critical review, Remote Sens. Environ., 51, 89–97, https://doi.org/10.1016/0034-4257(94)00067-W, 1995.
Flerchinger, G., Xaio, W., Marks, D., Sauer, T., and Yu, Q.: Comparison of algorithms for incoming atmospheric long-wave radiation, Water Resour. Res., 45, W03423, https://doi.org/10.1029/2008WR007394, 2009.
Freitag, H. P., Feng, Y., Mangum, L. J., McPhaden, M. J., Neander, J., and Stratton, L. D.: Calibration procedures and instrumental accuracy estimates of TAO temperature, relative humidity and radiation measurements, NOAA Tech. Memo. ERL PMEL-104, Pacific Marine Environmental Laboratory, Seattle, Washington, USA, 52 pp., https://www.pmel.noaa.gov/pubs/PDF/frei1589/frei1589.pdf (last access: 29 June 2025), 1994.
Freitag, H. P., McCarty, M. E., Nosse, C., Lukas, R., McPhaden, M. J., and Cronin, M. F.: COARE Seacat data: Calibrations and quality control procedures, NOAA Tech. Memo. ERL PMEL-115, Pacific Marine Environmental Laboratory, Seattle, WA, USA, 89 pp., https://www.pmel.noaa.gov/pubs/PDF/frei2034/frei2034.pdf (last access: 29 June 2025), 1999.
Freitag, H. P., O'Haleck, M., Thomas, G. C., and McPhaden, M. J.: Calibration procedures and instrumental accuracies for ATLAS wind measurements, NOAA Tech. Memo. OAR PMEL-119, Pacific Marine Environmental Laboratory, Seattle, WA, USA, 20 pp., https://www.pmel.noaa.gov/pubs/PDF/frei2339/frei2339.pdf (last access: 29 June 2025), 2001.
Frouin, R., Gautier, C., and Morcrette, J.: Downward longwave irradiance at the ocean surface from satellite data: Methodology and in situ validation, J. Geophys. Res.-Oceans, 93, 597–619, https://doi.org/10.1029/JC093iC01p00597, 1988.
Fung, I. Y., Harrison, D., and Lacis, A. A.: On the variability of the net longwave radiation at the ocean surface, Rev. Geophys., 22, 177–193, https://doi.org/10.1029/RG022i002p00177, 1984.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Grayek, S., Staneva, J., Schulz-Stellenfleth, J., Petersen, W., and Stanev, E. V.: Use of FerryBox surface temperature and salinity measurements to improve model based state estimates for the German Bight, J. Marine Syst., 88, 45–59, https://doi.org/10.1016/j.jmarsys.2011.02.020, 2011.
Gubler, S., Gruber, S., and Purves, R. S.: Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation., Atmos. Chem. Phys., 12, 5077–5098, https://doi.org/10.5194/acp-12-5077-2012, 2012.
Guo, Y., Cheng, J., and Liang, S.: Comprehensive assessment of parameterization methods for estimating clear-sky surface downward longwave radiation, Theor. Appl. Climatol., 135, 1045–1058, https://doi.org/10.1007/s00704-018-2423-7, 2019.
Habets, F., Noilhan, J., Golaz, C., Goutorbe, J., Lacarrere, P., Leblois, E., Ledoux, E., Martin, E., Ottlé, C., and Vidal-Madjar, D.: The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area: Part I: Model and database, J. Hydrol., 217, 75–96, https://doi.org/10.1016/S0022-1694(99)00019-0, 1999.
Hack, J. J.: Sensitivity of the simulated climate to a diagnostic formulation for cloud liquid water, J. Climate, 11, 1497–1515, https://doi.org/10.1175/1520-0442(1998)011<1497:SOTSCT>2.0.CO;2, 1998.
Henderson-Sellers, B.: A new formula for latent heat of vaporization of water as a function of temperature, Q. J. Roy. Meteor. Soc., 110, 1186–1190, https://doi.org/10.1002/qj.49711046626, 1984.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griessbach, S., Heng, Y., Konopka, P., Müller, R., Vogel, B., and Wright, J. S.: From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations, Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, 2019.
Idso, S. B. and Jackson, R. D.: Thermal radiation from the atmosphere, J. Geophys. Res., 74, 5397–5403, https://doi.org/10.1029/JC074i023p05397, 1969.
Iziomon, M. G., Mayer, H., and Matzarakis, A.: Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization, J. Atmos. Sol.-Terr. Phy., 65, 1107–1116, https://doi.org/10.1016/j.jastp.2003.07.007, 2003.
Jiang, B., Liang, S., Ma, H., Zhang, X., Xiao, Z., Zhao, X., Jia, K., Yao, Y., and Jia, A.: GLASS Daytime All-Wave Net Radiation Product: Algorithm Development and Preliminary Validation, Remote Sensing, 8, 222, https://doi.org/10.3390/rs8030222, 2016.
Jiang, B., Zhang, Y., Liang, S., Wohlfahrt, G., Arain, A., Cescatti, A., Georgiadis, T., Jia, K., Kiely, G., Lund, M., Montagnani, L., Magliulo, V., Ortiz, P. S., Oechel, W., Vaccari, F. P., Yao, Y., and Zhang, X.: Empirical estimation of daytime net radiation from shortwave radiation and ancillary information, Agr. Forest Meteorol., 211–212, 23–36, https://doi.org/10.1016/j.agrformet.2015.05.003, 2015.
Josey, S. A., Pascal, R. W., Taylor, P. K., and Yelland, M. J.: A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes, J. Geophys. Res.-Oceans, 108, 3108, https://doi.org/10.1029/2002JC001418, 2003.
Josey, S. A., Oakley, D., and Pascal, R. W.: On estimating the atmospheric longwave flux at the ocean surface from ship meteorological reports, J. Geophys. Res.-Oceans, 102, 27961–27972, https://doi.org/10.1029/97JC02420, 1997.
Jost, G., Dan Moore, R., Weiler, M., Gluns, D. R., and Alila, Y.: Use of distributed snow measurements to test and improve a snowmelt model for predicting the effect of forest clear-cutting, J. Hydrol., 376, 94–106, https://doi.org/10.1016/j.jhydrol.2009.07.017, 2009.
Kjaersgaard, J. H., Plauborg, F. L., and Hansen, S.: Comparison of models for calculating daytime long-wave irradiance using long term data set, Agr. Forest Meteorol., 143, 49–63, https://doi.org/10.1016/j.agrformet.2006.11.007, 2007.
Lake, B. J., Noor, S. M., Freitag, H. P., and McPhaden, M. J.: Calibration Procedures and Instrumental Accuracy Estimates of ATLAS Air Temperature and Relative Humidity Measurements, NOAA Tech. Memo. OAR PMEL-2569, Pacific Marine Environmental Laboratory, Seattle, WA, USA, 23 pp., https://www.pmel.noaa.gov/pubs/PDF/lake2569/lake2569.pdf (last access: 29 June 2025), 2003.
Li, M. and Coimbra, C. F. M.: On the effective spectral emissivity of clear skies and the radiative cooling potential of selectively designed materials, Int. J. Heat Mass Tran., 135, 1053–1062, https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.040, 2019.
Li, M., Jiang, Y., and Coimbra, C. F. M.: On the determination of atmospheric longwave irradiance under all-sky conditions, Sol. Energy, 144, 40–48, https://doi.org/10.1016/j.solener.2017.01.006, 2017.
Lindau, R.: Climate atlas of the Atlantic Ocean: derived from the comprehensive ocean atmosphere data set (COADS), Springer Science & Business Media, ISBN: 9783642595264, 2012.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.: Regional scale hydrology: II. Application of the VIC-2L model to the Weser River, Germany, Hydrolog. Sci. J., 43, 143–158, https://doi.org/10.1080/02626669809492108, 1998.
McPhaden, M. J., Ando, K., Bourles, B., Freitag, H., Lumpkin, R., Masumoto, Y., Murty, V., Nobre, P., Ravichandran, M., and Vialard, J.: The global tropical moored buoy array, Proceedings of OceanObs, 9, 668–682, 2010.
McPhaden, M. J., Busalacchi, A. J., Cheney, R., Donguy, J.-R., Gage, K. S., Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G. T., Niiler, P. P., Picaut, J., Reynolds, R. W., Smith, N., and Takeuchi, K.: The Tropical Ocean-Global Atmosphere observing system: A decade of progress, J. Geophys. Res.-Oceans, 103, 14169–14240, https://doi.org/10.1029/97JC02906, 1998.
McPhaden, M. J., Meyers, G., Ando, K., Masumoto, Y., Murty, V. S. N., Ravichandran, M., Syamsudin, F., Vialard, J., Yu, L., and Yu, W.: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction*, B. Am. Meteorol. Soc., 90, 459–480, https://doi.org/10.1175/2008BAMS2608.1, 2009.
Medovaya, M., Waliser, D. E., Weller, R. A., and McPhaden, M. J.: Assessing ocean buoy shortwave observations using clear-sky model calculations, J. Geophys. Res.-Oceans, 107, 6-1–6-22, https://doi.org/10.1029/2000JC000558, 2002.
Meyers, T. P. and Dale, R. F.: Predicting daily insolation with hourly cloud height and coverage, J. Appl. Meteorol. Clim., 22, 537–545, https://doi.org/10.1175/1520-0450(1983)022<0537:PDIWHC>2.0.CO;2, 1983.
Mills, G.: An urban canopy-layer climate model, Theor. Appl. Climatol., 57, 229–244, https://doi.org/10.1007/BF00863615, 1997.
Moyer, K. A. and Weller, R. A.: Observations of Surface Forcing from the Subduction Experiment: A Comparison with Global Model Products and Climatological Datasets, J. Climate, 10, 2725–2742, https://doi.org/10.1175/1520-0442(1997)010<2725:OOSFFT>2.0.CO;2, 1997.
Nandan, R., Ratnam, M. V., Kiran, V. R., and Naik, D. N.: Retrieval of cloud liquid water path using radiosonde measurements: Comparison with MODIS and ERA5, J. Atmos. Sol.-Terr. Phy., 227, 105799, https://doi.org/10.1016/j.jastp.2021.105799, 2022.
Nice, K. A., Coutts, A. M., and Tapper, N. J.: Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort, Urban Climate, 24, 1052–1076, https://doi.org/10.1016/j.uclim.2017.12.008, 2018.
NOAA National Data Buoy Center: OceanSITES, https://dods.ndbc.noaa.gov/oceansites/, last access: 1 July 2025.
NOAA/PMEL (National Oceanic and Atmospheric Administration/Pacific Marine Environmental Laboratory): GTMBA (Global Tropical Moored Buoy Array Program), https://www.pmel.noaa.gov/tao/drupal/disdel/, last access: 1 July 2025.
Ogunjobi, K. O. and Kim, Y. J.: Ultraviolet (0.280–0.400 µm) and broadband solar hourly radiation at Kwangju, South Korea: analysis of their correlation with aerosol optical depth and clearness index, Atmos. Res., 71, 193–214, https://doi.org/10.1016/j.atmosres.2004.05.001, 2004.
Oleson, K. W., Bonan, G. B., Feddema, J., Vertenstein, M., and Grimmond, C. S. B.: An Urban Parameterization for a Global Climate Model. Part I: Formulation and Evaluation for Two Cities, J. Appl. Meteorol. Clim., 47, 1038–1060, https://doi.org/10.1175/2007JAMC1597.1, 2008.
Pascal, R. W. and Josey, S. A.: Accurate Radiometric Measurement of the Atmospheric Longwave Flux at theSea Surface, J. Atmos. Ocean. Tech., 17, 1271–1282, https://doi.org/10.1175/1520-0426(2000)017<1271:ARMOTA>2.0.CO;2, 2000.
Pauwels, V. R. N., Verhoest, N. E. C., De Lannoy, G. J. M., Guissard, V., Lucau, C., and Defourny, P.: Optimization of a coupled hydrology–crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman filter, Water Resour. Res., 43, W04421, https://doi.org/10.1029/2006WR004942, 2007.
Payne, R. E.: Albedo of the Sea Surface, J. Atmos. Sci., 29, 959–970, https://doi.org/10.1175/1520-0469(1972)029<0959:AOTSS>2.0.CO;2, 1972.
Payne, R. E. and Anderson, S. P.: A New Look at Calibration and Use of Eppley Precision Infrared Radiometers. Part II: Calibration and Use of the Woods Hole Oceanographic Institution Improved Meteorology Precision Infrared Radiometer*, J. Atmos. Ocean. Tech., 16, 739–751, https://doi.org/10.1175/1520-0426(1999)016<0739:ANLACA>2.0.CO;2, 1999.
Pinardi, N., Allen, I., Demirov, E., De Mey, P., Korres, G., Lascaratos, A., Le Traon, P.-Y., Maillard, C., Manzella, G., and Tziavos, C.: The Mediterranean ocean forecasting system: first phase of implementation (1998–2001), Ann. Geophys., 21, 3–20, https://doi.org/10.5194/angeo-21-3-2003, 2003.
Pinker, R. T., Bentamy, A., Katsaros, K. B., Ma, Y., and Li, C.: Estimates of net heat fluxes over the Atlantic Ocean, J. Geophys. Res.-Oceans, 119, 410–427, https://doi.org/10.1002/2013JC009386, 2014.
Pinker, R. T., Zhang, B., Weller, R. A., and Chen, W.: Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean, Geophys. Res. Lett., 45, 2404–2412, https://doi.org/10.1002/2017GL076805, 2018.
Prata, A. J.: A new long-wave formula for estimating downward clear-sky radiation at the surface, Q. J. Roy. Meteor. Soc., 122, 1127–1151, https://doi.org/10.1002/qj.49712253306, 1996.
Rigon, R., Bertoldi, G., and Over, T. M.: GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets, J. Hydrometeorol., 7, 371–388, https://doi.org/10.1175/JHM497.1, 2006.
Robinson, G. D.: Notes on the measurement and estimation of atmospheric radiation, Q. J. Royal Meteorol. Soc., 73, 127–150, https://doi.org/10.1002/qj.49707331510, 1947.
Robinson, G. D.: Notes on the measurement and estimation of atmospheric radiation – 2, Q. J. Roy. Meteorol. Soc., 76, 37–51, https://doi.org/10.1002/qj.49707632705, 1950.
Rossow, W. B. and Zhang, Y.-C.: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2. Validation and first results, J. Geophys. Res.-Atmos., 100, 1167–1197, https://doi.org/10.1029/94JD02746, 1995.
Rutan, D. A., Kato, S., Doelling, D. R., Rose, F. G., Nguyen, L. T., Caldwell, T. E., and Loeb, N. G.: CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux, J. Atmos. Ocean. Tech., 32, 1121–1143, https://doi.org/10.1175/JTECH-D-14-00165.1, 2015.
Saltelli, A., Tarantola, S., and Chan, K. P.-S.: A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output, Technometrics, 41, 39–56, https://doi.org/10.1080/00401706.1999.10485594, 1999.
Satterlund, D. R.: An improved equation for estimating long-wave radiation from the atmosphere, Water Resour. Res., 15, 1649–1650, https://doi.org/10.1029/WR015i006p01649, 1979.
Saucier, F. J., Roy, F., Gilbert, D., Pellerin, P., and Ritchie, H.: Modeling the formation and circulation processes of water masses and sea ice in the Gulf of St. Lawrence, Canada, J. Geophys. Res.-Oceans, 108, 3269, https://doi.org/10.1029/2000JC000686, 2003.
Schlosser, C. A., Robock, A., Vinnikov, K. Y., Speranskaya, N. A., and Xue, Y.: 18-Year Land-Surface Hydrology Model Simulations for a Midlatitude Grassland Catchment in Valdai, Russia, Mon. Weather Rev., 125, 3279–3296, https://doi.org/10.1175/1520-0493(1997)125<3279:YLSHMS>2.0.CO;2, 1997.
Schulz, E. W., Josey, S. A., and Verein, R.: First air-sea flux mooring measurements in the Southern Ocean, Geophys. Res. Lett., 39, L16606, https://doi.org/10.1029/2012GL052290, 2012.
Schwarzschild, K.: Ueber Diffusion und Absorption in der Sonnenatmosphäre, Sitzungsber. Königl. Preuss. Akad. Wiss., 47, 1183–1200, https://www.google.com/books/edition/%C3%9Cber_Diffusion_und_Absorption_in_der_So/HNgzvwEACAAJ?hl=en (last access: 1 July 2025), 1914.
Sridhar, V. and Elliott, R. L.: On the development of a simple downwelling longwave radiation scheme, Agr. Forest Meteorol., 112, 237–243, https://doi.org/10.1016/S0168-1923(02)00129-6, 2002.
Staley, D. O. and Jurica, G. M.: Effective Atmospheric Emissivity under Clear Skies, J. Appl. Meteorol. Clim., 11, 349–356, https://doi.org/10.1175/1520-0450(1972)011<0349:EAEUCS>2.0.CO;2, 1972.
Swinbank, W. C.: Long-wave radiation from clear skies, Q. J. Roy. Meteor. Soc., 89, 339–348, https://doi.org/10.1002/qj.49708938105, 1963.
Thandlam, V. and Rahaman, H.: Evaluation of surface shortwave and longwave downwelling radiations over the global tropical oceans, SN Appl. Sci., 1, 1171, https://doi.org/10.1007/s42452-019-1172-2, 2019.
Tiedtke, M.: Representation of Clouds in Large-Scale Models, Mon. Weather Rev., 121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2, 1993.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's global energy budget, B. Am. Meteorol. Soc., 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1, 2009.
Vanhellemont, Q.: Automated water surface temperature retrieval from Landsat 8/TIRS, Remote Sens. Environ., 237, 111518, https://doi.org/10.1016/j.rse.2019.111518, 2020.
Vertessy, R. A., Hatton, T. J., O'Shaughnessy, P. J., and Jayasuriya, M. D. A.: Predicting water yield from a mountain ash forest catchment using a terrain analysis based catchment model, J. Hydrol., 150, 665–700, https://doi.org/10.1016/0022-1694(93)90131-R, 1993.
Viúdez-Mora, A., Costa-Surós, M., Calbó, J., and González, J. A.: Modeling atmospheric longwave radiation at the surface during overcast skies: The role of cloud base height, J. Geophys. Res.-Atmos., 120, 199–214, https://doi.org/10.1002/2014JD022310, 2015.
Wang, K. and Liang, S.: Global atmospheric downward longwave radiation over land surface under all-sky conditions from 1973 to 2008, J. Geophys. Res.-Atmos., 114, D19101, https://doi.org/10.1029/2009JD011800, 2009a.
Wang, T., Shi, J., Ma, Y., Letu, H., and Li, X.: All-sky longwave downward radiation from satellite measurements: General parameterizations based on LST, column water vapor and cloud top temperature, ISPRS J. Photogramm., 161, 52–60, https://doi.org/10.1016/j.isprsjprs.2020.01.011, 2020.
Wang, W. and Liang, S.: Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data, Remote Sens. Environ., 113, 745–754, https://doi.org/10.1016/j.rse.2008.12.004, 2009b.
Woods Hole Oceanographic Institution: Upper Ocean Processes Group, https://uop.whoi.edu/index.html, last access: 1 July 2025.
Yang, F. and Cheng, J.: A framework for estimating cloudy sky surface downward longwave radiation from the derived active and passive cloud property parameters, Remote Sens. Environ., 248, 111972, https://doi.org/10.1016/j.rse.2020.111972, 2020.
Young, A. H., Knapp, K. R., Inamdar, A., Hankins, W., and Rossow, W. B.: The International Satellite Cloud Climatology Project H-Series climate data record product, Earth Syst. Sci. Data, 10, 583–593, https://doi.org/10.5194/essd-10-583-2018, 2018.
Yu, S., Xin, X., Liu, Q., Zhang, H., and Li, L.: Comparison of Cloudy-Sky Downward Longwave Radiation Algorithms Using Synthetic Data, Ground-Based Data, and Satellite Data, J. Geophys. Res.-Atmos., 123, 5397–5415, https://doi.org/10.1029/2017JD028234, 2018.
Zapadka, T., Wozniak, S. B., and Wozniak, B.: A simple formula for the net long-wave radiation flux in the Southern Baltic Sea, Oceanologia, 43, 265–277, 2001.
Zhou, Y. and Cess, R. D.: Algorithm development strategies for retrieving the downwelling longwave flux at the Earth's surface, J. Geophys. Res.-Atmos., 106, 12477–12488, https://doi.org/10.1029/2001JD900144, 2001.
Zhou, Y., Kratz, D. P., Wilber, A. C., Gupta, S. K., and Cess, R. D.: An improved algorithm for retrieving surface downwelling longwave radiation from satellite measurements, J. Geophys. Res.-Atmos., 112, D15102, https://doi.org/10.1029/2006JD008159, 2007.
Short summary
We developed a new method to estimate how much heat the ocean surface receives from the atmosphere, which is important for understanding weather and climate. Using over 30 years of data from buoys around the world, we created a model that outperforms existing ones, especially under cloudy skies. Our results show that including detailed cloud information improves accuracy, making this method useful for global climate and ocean research.
We developed a new method to estimate how much heat the ocean surface receives from the...