Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
Volume 7, issue 9
Atmos. Meas. Tech., 7, 3151–3175, 2014
https://doi.org/10.5194/amt-7-3151-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 7, 3151–3175, 2014
https://doi.org/10.5194/amt-7-3151-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 26 Sep 2014

Research article | 26 Sep 2014

Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak

M. Taylor et al.

Related authors

Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Eleni Athanasopoulou, Orestis Speyer, Panagiotis I. Raptis, Eleni Marinou, Emmanouil Proestakis, Stavros Solomos, Evangelos Gerasopoulos, Vassilis Amiridis, Alkiviadis Bais, and Charalabos Kontoes
Atmos. Meas. Tech., 10, 2435–2453, https://doi.org/10.5194/amt-10-2435-2017,https://doi.org/10.5194/amt-10-2435-2017, 2017
Short summary
TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece
Melina-Maria Zempila, Jos H. G. M. van Geffen, Michael Taylor, Ilias Fountoulakis, Maria-Elissavet Koukouli, Michiel van Weele, Ronald J. van der A, Alkiviadis Bais, Charikleia Meleti, and Dimitrios Balis
Atmos. Chem. Phys., 17, 7157–7174, https://doi.org/10.5194/acp-17-7157-2017,https://doi.org/10.5194/acp-17-7157-2017, 2017
Short summary
Aerosol microphysical retrievals from precision filter radiometer direct solar radiation measurements and comparison with AERONET
S. Kazadzis, I. Veselovskii, V. Amiridis, J. Gröbner, A. Suvorina, S. Nyeki, E. Gerasopoulos, N. Kouremeti, M. Taylor, A. Tsekeri, and C. Wehrli
Atmos. Meas. Tech., 7, 2013–2025, https://doi.org/10.5194/amt-7-2013-2014,https://doi.org/10.5194/amt-7-2013-2014, 2014
Multi-modal analysis of aerosol robotic network size distributions for remote sensing applications: dominant aerosol type cases
M. Taylor, S. Kazadzis, and E. Gerasopoulos
Atmos. Meas. Tech., 7, 839–858, https://doi.org/10.5194/amt-7-839-2014,https://doi.org/10.5194/amt-7-839-2014, 2014
Optimizing CALIPSO Saharan dust retrievals
V. Amiridis, U. Wandinger, E. Marinou, E. Giannakaki, A. Tsekeri, S. Basart, S. Kazadzis, A. Gkikas, M. Taylor, J. Baldasano, and A. Ansmann
Atmos. Chem. Phys., 13, 12089–12106, https://doi.org/10.5194/acp-13-12089-2013,https://doi.org/10.5194/acp-13-12089-2013, 2013

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Inversion of multiangular polarimetric measurements from the ACEPOL campaign: an application of improving aerosol property and hyperspectral ocean color retrievals
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Kirk Knobelspiesse, Amir Ibrahim, Brian Cairns, Susanne E. Craig, Guangliang Fu, Otto Hasekamp, Yongxiang Hu, and P. Jeremy Werdell
Atmos. Meas. Tech., 13, 3939–3956, https://doi.org/10.5194/amt-13-3939-2020,https://doi.org/10.5194/amt-13-3939-2020, 2020
Improved water vapour retrieval from AMSU-B and MHS in the Arctic
Arantxa M. Triana-Gómez, Georg Heygster, Christian Melsheimer, Gunnar Spreen, Monia Negusini, and Boyan H. Petkov
Atmos. Meas. Tech., 13, 3697–3715, https://doi.org/10.5194/amt-13-3697-2020,https://doi.org/10.5194/amt-13-3697-2020, 2020
Short summary
The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Sergey Korkin, Joel S. Schafer, Alexander Smirnov, Mikhail Sorokin, and Alexei Lyapustin
Atmos. Meas. Tech., 13, 3375–3411, https://doi.org/10.5194/amt-13-3375-2020,https://doi.org/10.5194/amt-13-3375-2020, 2020
Aerosol optical properties as observed from an ultralight aircraft over the Strait of Gibraltar
Patrick Chazette
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-131,https://doi.org/10.5194/amt-2020-131, 2020
Revised manuscript accepted for AMT
Short summary
Issues related to the retrieval of stratospheric-aerosol particle size information based on optical measurements
Christian von Savigny and Christoph G. Hoffmann
Atmos. Meas. Tech., 13, 1909–1920, https://doi.org/10.5194/amt-13-1909-2020,https://doi.org/10.5194/amt-13-1909-2020, 2020
Short summary

Cited articles

Abdi, H. and Williams, L. J.: Principal component analysis, Wiley Interdisciplinary Reviews, Comput. Stat., 2, 433–459, https://doi.org/10.1002/wics.101, 2010.
AERONET: Level 2.0 Version 2 daily averaged almucantar inversion products, available at:f http://aeronet.gsfc.nasa.gov/cgi-bin/combined_data_access_inv, last access: 7 April 2012.
Albayrak, A., Wei, J., Petrenko, M., Lynnes, C., and Levy, R. C.: Global bias adjustment for MODIS aerosol optical thickness using neural network, J. Appl. Remote Sens., 7, 073514, 1–16, 2013.
Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press, New York, NY, USA, 1995.
Chin, M., Rood, R. B., Lin, S. J., Müller, J. F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the global model GOCART: model description and global properties, J. Geophys. Res., 105, 24671–24687, 2000.
Publications Copernicus
Download
Citation