Articles | Volume 7, issue 9
https://doi.org/10.5194/amt-7-3151-2014
https://doi.org/10.5194/amt-7-3151-2014
Research article
 | 
26 Sep 2014
Research article |  | 26 Sep 2014

Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak

M. Taylor, S. Kazadzis, A. Tsekeri, A. Gkikas, and V. Amiridis

Related authors

Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Eleni Athanasopoulou, Orestis Speyer, Panagiotis I. Raptis, Eleni Marinou, Emmanouil Proestakis, Stavros Solomos, Evangelos Gerasopoulos, Vassilis Amiridis, Alkiviadis Bais, and Charalabos Kontoes
Atmos. Meas. Tech., 10, 2435–2453, https://doi.org/10.5194/amt-10-2435-2017,https://doi.org/10.5194/amt-10-2435-2017, 2017
Short summary
TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece
Melina-Maria Zempila, Jos H. G. M. van Geffen, Michael Taylor, Ilias Fountoulakis, Maria-Elissavet Koukouli, Michiel van Weele, Ronald J. van der A, Alkiviadis Bais, Charikleia Meleti, and Dimitrios Balis
Atmos. Chem. Phys., 17, 7157–7174, https://doi.org/10.5194/acp-17-7157-2017,https://doi.org/10.5194/acp-17-7157-2017, 2017
Short summary
Aerosol microphysical retrievals from precision filter radiometer direct solar radiation measurements and comparison with AERONET
S. Kazadzis, I. Veselovskii, V. Amiridis, J. Gröbner, A. Suvorina, S. Nyeki, E. Gerasopoulos, N. Kouremeti, M. Taylor, A. Tsekeri, and C. Wehrli
Atmos. Meas. Tech., 7, 2013–2025, https://doi.org/10.5194/amt-7-2013-2014,https://doi.org/10.5194/amt-7-2013-2014, 2014
Multi-modal analysis of aerosol robotic network size distributions for remote sensing applications: dominant aerosol type cases
M. Taylor, S. Kazadzis, and E. Gerasopoulos
Atmos. Meas. Tech., 7, 839–858, https://doi.org/10.5194/amt-7-839-2014,https://doi.org/10.5194/amt-7-839-2014, 2014
Optimizing CALIPSO Saharan dust retrievals
V. Amiridis, U. Wandinger, E. Marinou, E. Giannakaki, A. Tsekeri, S. Basart, S. Kazadzis, A. Gkikas, M. Taylor, J. Baldasano, and A. Ansmann
Atmos. Chem. Phys., 13, 12089–12106, https://doi.org/10.5194/acp-13-12089-2013,https://doi.org/10.5194/acp-13-12089-2013, 2013

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Multi-angle aerosol optical depth retrieval method based on improved surface reflectance
Lijuan Chen, Ren Wang, Ying Fei, Peng Fang, Yong Zha, and Haishan Chen
Atmos. Meas. Tech., 17, 4411–4424, https://doi.org/10.5194/amt-17-4411-2024,https://doi.org/10.5194/amt-17-4411-2024, 2024
Short summary
Comparison of diurnal aerosol products retrieved from combinations of micro-pulse lidar and sun photometer observations over the KAUST observation site
Anton Lopatin, Oleg Dubovik, Georgiy Stenchikov, Ellsworth J. Welton, Illia Shevchenko, David Fuertes, Marcos Herreras-Giralda, Tatsiana Lapyonok, and Alexander Smirnov
Atmos. Meas. Tech., 17, 4445–4470, https://doi.org/10.5194/amt-17-4445-2024,https://doi.org/10.5194/amt-17-4445-2024, 2024
Short summary
First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia
Yeseul Cho, Jhoon Kim, Sujung Go, Mijin Kim, Seoyoung Lee, Minseok Kim, Heesung Chong, Won-Jin Lee, Dong-Won Lee, Omar Torres, and Sang Seo Park
Atmos. Meas. Tech., 17, 4369–4390, https://doi.org/10.5194/amt-17-4369-2024,https://doi.org/10.5194/amt-17-4369-2024, 2024
Short summary
Aerosol optical depth data fusion with Geostationary Korea Multi-Purpose Satellite (GEO-KOMPSAT-2) instruments GEMS, AMI, and GOCI-II: statistical and deep neural network methods
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Yun-Gon Lee, Sujung Go, and Kyunghwa Lee
Atmos. Meas. Tech., 17, 4317–4335, https://doi.org/10.5194/amt-17-4317-2024,https://doi.org/10.5194/amt-17-4317-2024, 2024
Short summary
Stratospheric aerosol characteristics from SCIAMACHY limb observations: two-parameter retrieval
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024,https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary

Cited articles

Abdi, H. and Williams, L. J.: Principal component analysis, Wiley Interdisciplinary Reviews, Comput. Stat., 2, 433–459, https://doi.org/10.1002/wics.101, 2010.
AERONET: Level 2.0 Version 2 daily averaged almucantar inversion products, available at:f http://aeronet.gsfc.nasa.gov/cgi-bin/combined_data_access_inv, last access: 7 April 2012.
Albayrak, A., Wei, J., Petrenko, M., Lynnes, C., and Levy, R. C.: Global bias adjustment for MODIS aerosol optical thickness using neural network, J. Appl. Remote Sens., 7, 073514, 1–16, 2013.
Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press, New York, NY, USA, 1995.
Chin, M., Rood, R. B., Lin, S. J., Müller, J. F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the global model GOCART: model description and global properties, J. Geophys. Res., 105, 24671–24687, 2000.
Download