Articles | Volume 7, issue 9
Atmos. Meas. Tech., 7, 3151–3175, 2014
https://doi.org/10.5194/amt-7-3151-2014
Atmos. Meas. Tech., 7, 3151–3175, 2014
https://doi.org/10.5194/amt-7-3151-2014

Research article 26 Sep 2014

Research article | 26 Sep 2014

Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak

M. Taylor et al.

Related authors

Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Michael Taylor, Eleni Athanasopoulou, Orestis Speyer, Panagiotis I. Raptis, Eleni Marinou, Emmanouil Proestakis, Stavros Solomos, Evangelos Gerasopoulos, Vassilis Amiridis, Alkiviadis Bais, and Charalabos Kontoes
Atmos. Meas. Tech., 10, 2435–2453, https://doi.org/10.5194/amt-10-2435-2017,https://doi.org/10.5194/amt-10-2435-2017, 2017
Short summary
TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece
Melina-Maria Zempila, Jos H. G. M. van Geffen, Michael Taylor, Ilias Fountoulakis, Maria-Elissavet Koukouli, Michiel van Weele, Ronald J. van der A, Alkiviadis Bais, Charikleia Meleti, and Dimitrios Balis
Atmos. Chem. Phys., 17, 7157–7174, https://doi.org/10.5194/acp-17-7157-2017,https://doi.org/10.5194/acp-17-7157-2017, 2017
Short summary
Aerosol microphysical retrievals from precision filter radiometer direct solar radiation measurements and comparison with AERONET
S. Kazadzis, I. Veselovskii, V. Amiridis, J. Gröbner, A. Suvorina, S. Nyeki, E. Gerasopoulos, N. Kouremeti, M. Taylor, A. Tsekeri, and C. Wehrli
Atmos. Meas. Tech., 7, 2013–2025, https://doi.org/10.5194/amt-7-2013-2014,https://doi.org/10.5194/amt-7-2013-2014, 2014
Multi-modal analysis of aerosol robotic network size distributions for remote sensing applications: dominant aerosol type cases
M. Taylor, S. Kazadzis, and E. Gerasopoulos
Atmos. Meas. Tech., 7, 839–858, https://doi.org/10.5194/amt-7-839-2014,https://doi.org/10.5194/amt-7-839-2014, 2014
Optimizing CALIPSO Saharan dust retrievals
V. Amiridis, U. Wandinger, E. Marinou, E. Giannakaki, A. Tsekeri, S. Basart, S. Kazadzis, A. Gkikas, M. Taylor, J. Baldasano, and A. Ansmann
Atmos. Chem. Phys., 13, 12089–12106, https://doi.org/10.5194/acp-13-12089-2013,https://doi.org/10.5194/acp-13-12089-2013, 2013

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of stratospheric aerosol size distribution parameters using satellite solar occultation measurements at three wavelengths
Felix Wrana, Christian von Savigny, Jacob Zalach, and Larry W. Thomason
Atmos. Meas. Tech., 14, 2345–2357, https://doi.org/10.5194/amt-14-2345-2021,https://doi.org/10.5194/amt-14-2345-2021, 2021
Short summary
Relative sky radiance from multi-exposure all-sky camera images
Juan C. Antuña-Sánchez, Roberto Román, Victoria E. Cachorro, Carlos Toledano, César López, Ramiro González, David Mateos, Abel Calle, and Ángel M. de Frutos
Atmos. Meas. Tech., 14, 2201–2217, https://doi.org/10.5194/amt-14-2201-2021,https://doi.org/10.5194/amt-14-2201-2021, 2021
Short summary
An uncertainty-based protocol for the setup and measurement of soot–black carbon emissions from gas flares using sky-LOSA
Bradley M. Conrad and Matthew R. Johnson
Atmos. Meas. Tech., 14, 1573–1591, https://doi.org/10.5194/amt-14-1573-2021,https://doi.org/10.5194/amt-14-1573-2021, 2021
Short summary
A new measurement approach for validating satellite-based above-cloud aerosol optical depth
Charles K. Gatebe, Hiren Jethva, Ritesh Gautam, Rajesh Poudyal, and Tamás Várnai
Atmos. Meas. Tech., 14, 1405–1423, https://doi.org/10.5194/amt-14-1405-2021,https://doi.org/10.5194/amt-14-1405-2021, 2021
Short summary
OMPS LP Version 2.0 multi-wavelength aerosol extinction coefficient retrieval algorithm
Ghassan Taha, Robert Loughman, Tong Zhu, Larry Thomason, Jayanta Kar, Landon Rieger, and Adam Bourassa
Atmos. Meas. Tech., 14, 1015–1036, https://doi.org/10.5194/amt-14-1015-2021,https://doi.org/10.5194/amt-14-1015-2021, 2021
Short summary

Cited articles

Abdi, H. and Williams, L. J.: Principal component analysis, Wiley Interdisciplinary Reviews, Comput. Stat., 2, 433–459, https://doi.org/10.1002/wics.101, 2010.
AERONET: Level 2.0 Version 2 daily averaged almucantar inversion products, available at:f http://aeronet.gsfc.nasa.gov/cgi-bin/combined_data_access_inv, last access: 7 April 2012.
Albayrak, A., Wei, J., Petrenko, M., Lynnes, C., and Levy, R. C.: Global bias adjustment for MODIS aerosol optical thickness using neural network, J. Appl. Remote Sens., 7, 073514, 1–16, 2013.
Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press, New York, NY, USA, 1995.
Chin, M., Rood, R. B., Lin, S. J., Müller, J. F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the global model GOCART: model description and global properties, J. Geophys. Res., 105, 24671–24687, 2000.
Download