Articles | Volume 8, issue 3
Atmos. Meas. Tech., 8, 1157–1171, 2015
https://doi.org/10.5194/amt-8-1157-2015
Atmos. Meas. Tech., 8, 1157–1171, 2015
https://doi.org/10.5194/amt-8-1157-2015

Research article 09 Mar 2015

Research article | 09 Mar 2015

Improving satellite-retrieved aerosol microphysical properties using GOCART data

S. Li et al.

Related authors

Full-coverage 1 km daily ambient PM2.5 and O3 concentrations of China in 2005–2017 based on multi-variable random forest model
Runmei Ma, Jie Ban, Qing Wang, Yayi Zhang, Yang Yang, Shenshen Li, Wenjiao Shi, and Tiantian Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-296,https://doi.org/10.5194/essd-2021-296, 2021
Preprint under review for ESSD
Short summary
ESTIMATION OF SATELLITE-BASED SO42− AND NH4+ COMPOSITION OF AMBIENT FINE PARTICULATE MATTER OVER CHINA USING CHEMICAL TRANSPORT MODEL
Y. Si, S. Li, L. Chen, C. Yu, and W. Zhu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1553–1564, https://doi.org/10.5194/isprs-archives-XLII-3-1553-2018,https://doi.org/10.5194/isprs-archives-XLII-3-1553-2018, 2018
Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia
Q. Xiao, H. Zhang, M. Choi, S. Li, S. Kondragunta, J. Kim, B. Holben, R. C. Levy, and Y. Liu
Atmos. Chem. Phys., 16, 1255–1269, https://doi.org/10.5194/acp-16-1255-2016,https://doi.org/10.5194/acp-16-1255-2016, 2016
Short summary
Impact of cloud horizontal inhomogeneity and directional sampling on the retrieval of cloud droplet size by the POLDER instrument
H. Shang, L. Chen, F. M. Bréon, H. Letu, S. Li, Z. Wang, and L. Su
Atmos. Meas. Tech., 8, 4931–4945, https://doi.org/10.5194/amt-8-4931-2015,https://doi.org/10.5194/amt-8-4931-2015, 2015
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Mass concentration estimates of long-range-transported Canadian biomass burning aerosols from a multi-wavelength Raman polarization lidar and a ceilometer in Finland
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021,https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Retrievals of dust-related particle mass and ice-nucleating particle concentration profiles with ground-based polarization lidar and sun photometer over a megacity in central China
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021,https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Introducing the MISR level 2 near real-time aerosol product
Marcin L. Witek, Michael J. Garay, David J. Diner, Michael A. Bull, Felix C. Seidel, Abigail M. Nastan, and Earl G. Hansen
Atmos. Meas. Tech., 14, 5577–5591, https://doi.org/10.5194/amt-14-5577-2021,https://doi.org/10.5194/amt-14-5577-2021, 2021
Short summary
Estimation of PM2.5 concentration in China using linear hybrid machine learning model
Zhihao Song, Bin Chen, Yue Huang, Li Dong, and Tingting Yang
Atmos. Meas. Tech., 14, 5333–5347, https://doi.org/10.5194/amt-14-5333-2021,https://doi.org/10.5194/amt-14-5333-2021, 2021
Short summary
Species correlation measurements in turbulent flare plumes: considerations for field measurements
Scott P. Seymour and Matthew R. Johnson
Atmos. Meas. Tech., 14, 5179–5197, https://doi.org/10.5194/amt-14-5179-2021,https://doi.org/10.5194/amt-14-5179-2021, 2021
Short summary

Cited articles

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements, J. Atmos. Sci., 59, 461–483, 2002a.
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements, J. Atmos. Sci., 59, 461–483, 2002b.
Chin, M., Chu, A., Levy, R., Remer, L., Kaufman, Y., Holben, B., Eck, T., Ginoux, P., and Gao, Q. X.: Aerosol distribution in the Northern Hemisphere during ACE-Asia: Results from global model, satellite observations, and Sun photometer measurements, J. Geophys. Res.-Atmos., 109, D23S90, https://doi.org/10.1029/2004JD004829, 2004.
Chin, Mian, Diehl, T., Ginoux, P., and Malm, W.: Intercontinental transport of pollution and dust aerosols: implications for regional air quality, Atmos. Chem. Phys., 7, 5501–5517, https://doi.org/10.5194/acp-7-5501-2007, 2007.
Chin, M., Diehl, T., Dubovik, O., Eck, T. F., Holben, B. N., Sinyuk, A., and Streets, D. G.: Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements, Ann. Geophys., 27, 3439–3464, https://doi.org/10.5194/angeo-27-3439-2009, 2009.
Download
Short summary
We demonstrate a post-processing technique to improve MISR-retrieved aerosol optical properties when information content is low. By filtering the list of aerosol mixtures that pass the MISR retrieval acceptance criteria using pre-defined discrepancy thresholds between MISR and GOCART model simulations, the adjusted MISR Angstrom exponent (ANG) and absorbing AOD (AAOD) agree significantly better with sun-photometer validation data, especially when AOD<0.2 for ANG and AOD<0.5 for AAOD.