Articles | Volume 8, issue 1
Atmos. Meas. Tech., 8, 267–280, 2015
https://doi.org/10.5194/amt-8-267-2015
Atmos. Meas. Tech., 8, 267–280, 2015
https://doi.org/10.5194/amt-8-267-2015

Research article 13 Jan 2015

Research article | 13 Jan 2015

Development and validation of inexpensive, automated, dynamic flux chambers

B. B. Almand-Hunter et al.

Related authors

Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst
Sarah Waldo, Jake J. Beaulieu, William Barnett, D. Adam Balz, Michael J. Vanni, Tanner Williamson, and John T. Walker
Biogeosciences, 18, 5291–5311, https://doi.org/10.5194/bg-18-5291-2021,https://doi.org/10.5194/bg-18-5291-2021, 2021
Short summary
Extension of a gaseous dry deposition algorithm to oxidized volatile organic compounds and hydrogen cyanide for application in chemistry transport models
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev., 14, 5093–5105, https://doi.org/10.5194/gmd-14-5093-2021,https://doi.org/10.5194/gmd-14-5093-2021, 2021
Short summary
The acidity of atmospheric particles and clouds
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020,https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Characterization of organic nitrogen in aerosols at a forest site in the southern Appalachian Mountains
Xi Chen, Mingjie Xie, Michael D. Hays, Eric Edgerton, Donna Schwede, and John T. Walker
Atmos. Chem. Phys., 18, 6829–6846, https://doi.org/10.5194/acp-18-6829-2018,https://doi.org/10.5194/acp-18-6829-2018, 2018
Chromatography related performance of the Monitor for AeRosols and GAses in ambient air (MARGA): laboratory and field-based evaluation
Xi Chen, John T. Walker, and Chris Geron
Atmos. Meas. Tech., 10, 3893–3908, https://doi.org/10.5194/amt-10-3893-2017,https://doi.org/10.5194/amt-10-3893-2017, 2017
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Application of a mobile laboratory using a selected-ion flow-tube mass spectrometer (SIFT-MS) for characterisation of volatile organic compounds and atmospheric trace gases
Rebecca L. Wagner, Naomi J. Farren, Jack Davison, Stuart Young, James R. Hopkins, Alastair C. Lewis, David C. Carslaw, and Marvin D. Shaw
Atmos. Meas. Tech., 14, 6083–6100, https://doi.org/10.5194/amt-14-6083-2021,https://doi.org/10.5194/amt-14-6083-2021, 2021
Short summary
Development of a laser-photofragmentation laser-induced fluorescence instrument for the detection of nitrous acid and hydroxyl radicals in the atmosphere
Brandon Bottorff, Emily Reidy, Levi Mielke, Sebastien Dusanter, and Philip S. Stevens
Atmos. Meas. Tech., 14, 6039–6056, https://doi.org/10.5194/amt-14-6039-2021,https://doi.org/10.5194/amt-14-6039-2021, 2021
Short summary
Calibration and assessment of electrochemical low-cost sensors in remote alpine harsh environments
Federico Dallo, Daniele Zannoni, Jacopo Gabrieli, Paolo Cristofanelli, Francescopiero Calzolari, Fabrizio de Blasi, Andrea Spolaor, Dario Battistel, Rachele Lodi, Warren Raymond Lee Cairns, Ann Mari Fjæraa, Paolo Bonasoni, and Carlo Barbante
Atmos. Meas. Tech., 14, 6005–6021, https://doi.org/10.5194/amt-14-6005-2021,https://doi.org/10.5194/amt-14-6005-2021, 2021
Short summary
Intercomparison of IBBCEAS, NitroMAC and FTIR analyses for HONO, NO2 and CH2O measurements during the reaction of NO2 with H2O vapour in the simulation chamber CESAM
Hongming Yi, Mathieu Cazaunau, Aline Gratien, Vincent Michoud, Edouard Pangui, Jean-Francois Doussin, and Weidong Chen
Atmos. Meas. Tech., 14, 5701–5715, https://doi.org/10.5194/amt-14-5701-2021,https://doi.org/10.5194/amt-14-5701-2021, 2021
Short summary
Impact of ozone and inlet design on the quantification of isoprene-derived organic nitrates by thermal dissociation cavity ring-down spectroscopy (TD-CRDS)
Patrick Dewald, Raphael Dörich, Jan Schuladen, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 14, 5501–5519, https://doi.org/10.5194/amt-14-5501-2021,https://doi.org/10.5194/amt-14-5501-2021, 2021
Short summary

Cited articles

Aeschlimann, U., Nösberger, J., Edwards, P. J., Schneider, M. K., Richter, M., and Blum, H.: Responses of net ecosystem CO2 exchange in managed grassland to long-term CO2 enrichment, N fertilization and plant species, Plant Cell Environ., 28, 823–833, 2005.
Altimir, N., Vesala, T., Keronen, P., Kulmala, M., and Hari, P.: Methodology for direct field measurements of ozone flux to foliage with shoot chambers, Atmos. Environ., 36, 19–29, 2002.
Baldocchi, D. D., Hincks, B. B., and Meyers, T. P.: Measuring biosphere–atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 69, 1331–1340, 1988.
Benedict, K. B., Day, D., Schwandner, F. M., Kreidenweis, S. M., Schichtel, B., Malm, W. C., and Collett Jr., J. L.: Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado, Atmos. Environ., 64, 66–76, 2013.
Breuninger, C., Oswald, R., Kesselmeier, J., and Meixner, F. X.: The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O3) between plants and the atmosphere in the laboratory and in the field, Atmos. Meas. Tech., 5, 955–989, https://doi.org/10.5194/amt-5-955-2012, 2012.
Download