Articles | Volume 9, issue 3
https://doi.org/10.5194/amt-9-1369-2016
https://doi.org/10.5194/amt-9-1369-2016
Research article
 | 
01 Apr 2016
Research article |  | 01 Apr 2016

Profiling the PM2.5 mass concentration vertical distribution in the boundary layer

Zongming Tao, Zhenzhu Wang, Shijun Yang, Huihui Shan, Xiaomin Ma, Hui Zhang, Sugui Zhao, Dong Liu, Chenbo Xie, and Yingjian Wang

Related authors

A novel method for detecting tropopause structures based on the bi-Gaussian function
Kun Zhang, Tao Luo, Xuebin Li, Shengcheng Cui, Ningquan Weng, Yinbo Huang, and Yingjian Wang
Atmos. Chem. Phys., 24, 11157–11173, https://doi.org/10.5194/acp-24-11157-2024,https://doi.org/10.5194/acp-24-11157-2024, 2024
Short summary
Atmospheric Optical Turbulence Profile Measurement and Model Improvement over Arid and Semi-arid regions
Hao Yang, Zhiyuan Fang, Cheng Li, Xu Deng, Kunming Xing, and Chenbo Xie
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-55,https://doi.org/10.5194/amt-2021-55, 2021
Preprint withdrawn
Short summary
SegCloud: a novel cloud image segmentation model using a deep convolutional neural network for ground-based all-sky-view camera observation
Wanyi Xie, Dong Liu, Ming Yang, Shaoqing Chen, Benge Wang, Zhenzhu Wang, Yingwei Xia, Yong Liu, Yiren Wang, and Chaofan Zhang
Atmos. Meas. Tech., 13, 1953–1961, https://doi.org/10.5194/amt-13-1953-2020,https://doi.org/10.5194/amt-13-1953-2020, 2020
THE AEROSOLS OPTICAL PROPERTIES INVESTIGATION DURING THE DUST POLLUTION
S. L. Fu, C. B. Xie, X. M. Tian, P. Zhuang, L. Y. Qian, J. D. Shao, Z. Y. Fang, L. Li, B. X. Wang, and D. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 31–35, https://doi.org/10.5194/isprs-archives-XLII-3-W9-31-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W9-31-2019, 2019
CHARACTERIZATION OF SPRING AIR POLLUTION OF BEIJING IN 2019 USING ACTIVE AND PASSIVE REMOTE SENSING INSTRUMENTS
X. M. Tian, D. Liu, S. L. Fu, D. C. Wu, B. X. Wang, Z. Wang, and Y. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W9, 153–158, https://doi.org/10.5194/isprs-archives-XLII-3-W9-153-2019,https://doi.org/10.5194/isprs-archives-XLII-3-W9-153-2019, 2019

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Instruments and Platforms
The EarthCARE lidar cloud and aerosol profile processor (A-PRO): the A-AER, A-EBD, A-TC, and A-ICE products
David Patrick Donovan, Gerd-Jan van Zadelhoff, and Ping Wang
Atmos. Meas. Tech., 17, 5301–5340, https://doi.org/10.5194/amt-17-5301-2024,https://doi.org/10.5194/amt-17-5301-2024, 2024
Short summary
Shortwave Array Spectroradiometer-Hemispheric (SAS-He): design and evaluation
Evgueni Kassianov, Connor J. Flynn, James C. Barnard, Brian D. Ermold, and Jennifer M. Comstock
Atmos. Meas. Tech., 17, 4997–5013, https://doi.org/10.5194/amt-17-4997-2024,https://doi.org/10.5194/amt-17-4997-2024, 2024
Short summary
Enhancing mobile aerosol monitoring with CE376 dual-wavelength depolarization lidar
Maria Fernanda Sanchez Barrero, Ioana Elisabeta Popovici, Philippe Goloub, Stephane Victori, Qiaoyun Hu, Benjamin Torres, Thierry Podvin, Luc Blarel, Gaël Dubois, Fabrice Ducos, Eric Bourrianne, Aliaksandr Lapionak, Lelia Proniewski, Brent Holben, David Matthew Giles, and Anthony LaRosa
Atmos. Meas. Tech., 17, 3121–3146, https://doi.org/10.5194/amt-17-3121-2024,https://doi.org/10.5194/amt-17-3121-2024, 2024
Short summary
Assessment of the spectral misalignment effect (SMILE) on EarthCARE's Multi-Spectral Imager aerosol and cloud property retrievals
Nicole Docter, Anja Hünerbein, David P. Donovan, Rene Preusker, Jürgen Fischer, Jan Fokke Meirink, Piet Stammes, and Michael Eisinger
Atmos. Meas. Tech., 17, 2507–2519, https://doi.org/10.5194/amt-17-2507-2024,https://doi.org/10.5194/amt-17-2507-2024, 2024
Short summary
The Langley ratio method, a new approach for transferring photometer calibration from direct sun measurements
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024,https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary

Cited articles

An, J., Zhang, R., and Han, Z.: Seasonal changes of total suspended particles in the air of 15 big cities in northern parts of China, Climatic and Environmental Research, 5, 25–29, 2000.
Bernes, J. E., Bronner, S., and Becket, R.: Boundary layer scattering measurements with a charge-coupled device camera lidar , Appl. Optics, 42, 2647–2652, 2003.
Bo, G., Liu, D., and Wu, D.: Two-wavelength lidar for observation of aerosol optical and hygroscopic properties in fog and haze days, Chinese Journal of Lasers, 41, 0113001, https://doi.org/10.3788/cjl201441.0113001, 2014.
Che, H., Xia, X., Zhu, J., Wang, H. Wang, Y., Sun, J., Zhang, X., and Shi, G.: Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China, Environ. Sci. Pollut. R., 22, 1043–1053, https://doi.org/10.1007/s11356-014-3415-5, 2015.
Cordero, L., Wu, Y., Gross, B. M., and Moshary, F.: Use of passive and active ground and satellite remote sensing to monitor fine particulate pollutants on regional scales, Advance environmental, chemical, and Biological sensing technologies IX, Proc. Of SPIE, 8366, 83660M, 2012.
Download
Short summary
A new measurement technology of PM2.5 mass concentration profile near ground is addressed using a CCD side-scatter lidar and a PM2.5 detector. The PM2.5 mass concentration profile can be built upon the vertical distribution of the extinction coefficient for aerosol. The PM2.5 is always loading in the planet boundary layer with a complex muti-layer structure. The new method for PM2.5 mass concentration profile is useful for improving our understanding of air quality and atmospheric environment.