Articles | Volume 9, issue 8
Atmos. Meas. Tech., 9, 3619–3639, 2016
https://doi.org/10.5194/amt-9-3619-2016

Special issue: Atmospheric remote sensing using limb observations

Atmos. Meas. Tech., 9, 3619–3639, 2016
https://doi.org/10.5194/amt-9-3619-2016

Research article 09 Aug 2016

Research article | 09 Aug 2016

A multi-wavelength classification method for polar stratospheric cloud types using infrared limb spectra

Reinhold Spang et al.

Related authors

An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses
Lars Hoffmann and Reinhold Spang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-961,https://doi.org/10.5194/acp-2021-961, 2021
Preprint under review for ACP
Short summary
Empirical evidence for deep convection being a major source of stratospheric ice clouds over North America
Ling Zou, Lars Hoffmann, Sabine Griessbach, Reinhold Spang, and Lunche Wang
Atmos. Chem. Phys., 21, 10457–10475, https://doi.org/10.5194/acp-21-10457-2021,https://doi.org/10.5194/acp-21-10457-2021, 2021
Short summary
Observation of cirrus clouds with GLORIA during the WISE campaign: detection methods and cirrus characterization
Irene Bartolome Garcia, Reinhold Spang, Jörn Ungermann, Sabine Griessbach, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 14, 3153–3168, https://doi.org/10.5194/amt-14-3153-2021,https://doi.org/10.5194/amt-14-3153-2021, 2021
Short summary
A new method to detect and classify polar stratospheric nitric acid trihydrate clouds derived from radiative transfer simulations and its first application to airborne infrared limb emission observations
Christoph Kalicinsky, Sabine Griessbach, and Reinhold Spang
Atmos. Meas. Tech., 14, 1893–1915, https://doi.org/10.5194/amt-14-1893-2021,https://doi.org/10.5194/amt-14-1893-2021, 2021
Short summary
Cirrus cloud shape detection by tomographic extinction retrievals from infrared limb emission sounder measurements
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020,https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
PARAFOG v2.0: a near-real-time decision tool to support nowcasting fog formation events at local scales
Jean-François Ribaud, Martial Haeffelin, Jean-Charles Dupont, Marc-Antoine Drouin, Felipe Toledo, and Simone Kotthaus
Atmos. Meas. Tech., 14, 7893–7907, https://doi.org/10.5194/amt-14-7893-2021,https://doi.org/10.5194/amt-14-7893-2021, 2021
Short summary
Inpainting radar missing data regions with deep learning
Andrew Geiss and Joseph C. Hardin
Atmos. Meas. Tech., 14, 7729–7747, https://doi.org/10.5194/amt-14-7729-2021,https://doi.org/10.5194/amt-14-7729-2021, 2021
Short summary
Improved cloud detection for the Aura Microwave Limb Sounder (MLS): training an artificial neural network on colocated MLS and Aqua MODIS data
Frank Werner, Nathaniel J. Livesey, Michael J. Schwartz, William G. Read, Michelle L. Santee, and Galina Wind
Atmos. Meas. Tech., 14, 7749–7773, https://doi.org/10.5194/amt-14-7749-2021,https://doi.org/10.5194/amt-14-7749-2021, 2021
Short summary
Triple-frequency radar retrieval of microphysical properties of snow
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech., 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021,https://doi.org/10.5194/amt-14-7243-2021, 2021
Short summary
Retrieving microphysical properties of concurrent pristine ice and snow using polarimetric radar observations
Nicholas J. Kedzuf, J. Christine Chiu, V. Chandrasekar, Sounak Biswas, Shashank S. Joshil, Yinghui Lu, Peter Jan van Leeuwen, Christopher Westbrook, Yann Blanchard, and Sebastian O'Shea
Atmos. Meas. Tech., 14, 6885–6904, https://doi.org/10.5194/amt-14-6885-2021,https://doi.org/10.5194/amt-14-6885-2021, 2021
Short summary

Cited articles

Achtert, P. and Tesche, M.: Assessing lidar-based classification schemes for polar stratospheric clouds based on 16 years of measurements at Esrange, Sweden, J. Geophys. Res., 119, 1386–1405, https://doi.org/10.1002/2013JD020355, 2014.
Alexander, S. P., Klekociuk, A. R., McDonald, A. J., and Pitts, M. C.: Quantifying the role of orographic gravity waves on polar stratospheric cloud occurrence in the Antarctic and the Arctic, J. Geophys. Res.-Atmos., 118, 11493–11507, https://doi.org/10.1002/2013JD020122, 2013.
Arnone, E., Castelli, E., Papandrea, E., Carlotti, M., and Dinelli, B. M.: Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach, Atmos. Chem. Phys., 12, 9149–9165, https://doi.org/10.5194/acp-12-9149-2012, 2012.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objective, Data Products, and Processing Systems, IEEE T. Geosci. Remote Sens., 41, 253–264, 2003.
Avery, M., Winker, D., Heymsfield, A., Vaughan, M., Young, S., Hu, Y., and Trepte, C.: Cloud ice water content retrieved from the CALIOP space-based lidar, Geophys. Res. Lett., 19, L05808, https://doi.org/10.1029/2011GL050545, 2012.
Download
Short summary
We present a new classification approach for different polar stratospheric cloud types. The so-called Bayesian classifier estimates the most likely probability that one of the three PSC types (ice, NAT, or STS) dominates the characteristics of a measured infrared spectrum. The entire measurement period of the satellite instrument MIPAS from July 2002 to April 2013 is processed using the new classifier.