Articles | Volume 9, issue 9
https://doi.org/10.5194/amt-9-4673-2016
https://doi.org/10.5194/amt-9-4673-2016
Research article
 | 
21 Sep 2016
Research article |  | 21 Sep 2016

The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 2: Accurate calibration of high spectral-resolution infrared measurements of surface solar radiation

Andreas Reichert, Markus Rettinger, and Ralf Sussmann

Related authors

The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum
Ralf Sussmann, Andreas Reichert, and Markus Rettinger
Atmos. Chem. Phys., 16, 11649–11669, https://doi.org/10.5194/acp-16-11649-2016,https://doi.org/10.5194/acp-16-11649-2016, 2016
Short summary
The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 3: Quantification of the mid- and near-infrared water vapor continuum in the 2500 to 7800 cm−1 spectral range under atmospheric conditions
Andreas Reichert and Ralf Sussmann
Atmos. Chem. Phys., 16, 11671–11686, https://doi.org/10.5194/acp-16-11671-2016,https://doi.org/10.5194/acp-16-11671-2016, 2016
Short summary
Pointing errors in solar absorption spectrometry – correction scheme and its validation
A. Reichert, P. Hausmann, and R. Sussmann
Atmos. Meas. Tech., 8, 3715–3728, https://doi.org/10.5194/amt-8-3715-2015,https://doi.org/10.5194/amt-8-3715-2015, 2015
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Assimilation of volcanic sulfur dioxide products from IASI and TROPOMI into the chemical transport model MOCAGE: case study of the 2021 La Soufrière Saint Vincent eruption with the March 2022 version of MOCAGE
Mickaël Bacles, Jonathan Améric, and Vincent Guidard
Atmos. Meas. Tech., 18, 2659–2680, https://doi.org/10.5194/amt-18-2659-2025,https://doi.org/10.5194/amt-18-2659-2025, 2025
Short summary
In-flight estimation of instrument spectral response functions using sparse representations
Jihanne El Haouari, Jean-Michel Gaucel, Christelle Pittet, Jean-Yves Tourneret, and Herwig Wendt
Atmos. Meas. Tech., 18, 2573–2590, https://doi.org/10.5194/amt-18-2573-2025,https://doi.org/10.5194/amt-18-2573-2025, 2025
Short summary
Robustness of atmospheric trace gas retrievals obtained from low-spectral-resolution Fourier transform infrared absorption spectra under variations of interferogram length
Bavo Langerock, Martine De Mazière, Filip Desmet, Pauli Heikkinen, Rigel Kivi, Mahesh Kumar Sha, Corinne Vigouroux, Minqiang Zhou, Gopala Krishna Darbha, and Mohmmed Talib
Atmos. Meas. Tech., 18, 2439–2446, https://doi.org/10.5194/amt-18-2439-2025,https://doi.org/10.5194/amt-18-2439-2025, 2025
Short summary
Retrieval of NO2 profiles from 3 years of Pandora MAX-DOAS measurements in Toronto, Canada
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech., 18, 2397–2423, https://doi.org/10.5194/amt-18-2397-2025,https://doi.org/10.5194/amt-18-2397-2025, 2025
Short summary
A channel selection methodology for enhancing volcanic SO2 monitoring using FY-3E/HIRAS-II hyperspectral data
Xinyu Li, Lin Zhu, Hongfu Sun, Jun Li, Ximing Lv, Chengli Qi, and Huanhuan Yan
Atmos. Meas. Tech., 18, 2333–2352, https://doi.org/10.5194/amt-18-2333-2025,https://doi.org/10.5194/amt-18-2333-2025, 2025
Short summary

Cited articles

Bolsée, D., Pereira, N., Decuyper, W., Gillotay, D., Yu, H., Sperfeld, P., Pape, S., Cuevas, E., Redondas, A., Hernandéz, Y., and Weber, M.: Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer–Langley Technique, Sol. Phys., 289, 2433–2457, https://doi.org/10.1007/s11207-014-0474-1, 2014.
Borsdorff, T. and Sussmann, R.: On seasonality of stratomesospheric CO above midlatitudes: New insight from solar FTIR spectrometry at Zugspitze and Garmisch, Geophys. Res. Lett., 36, L21804, https://doi.org/10.1029/2009GL040056, 2009.
Burch, D. E.: Continuum absorption by H2O. Report AFGL-TR-81-0300, Air Force Geophys. Laboratory, Hanscom AFB, MA, USA, 1982.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, Short Communication, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Delamere, J. S., Clough, S. A., Payne, V. H., Mlawer, E. J. Turner, D. D., and Gamache, R. R.: A far-infrared radiative closure study in the Arctic: Application to water vapor, J. Geophys. Res., 115, D17106, https://doi.org/10.1029/2009JD012968, 2010.
Short summary
Quantitative knowledge of infrared absorption by water vapor is crucial for remote sensing and climate simulations. Near-infrared (NIR) continuum absorption currently still lacks quantification by atmospheric measurements but can be investigated with radiative closure experiments using radiometrically calibrated solar spectra. We demonstrate for the first time a calibration method with sufficient accuracy (1.0–1.7 %) for continuum quantification in the 2500 to 7800 cm−1spectral range.
Share